Nazarov Uncertainty Principle for Certain Lie Groups

Authors

  • Piyush Bansal Department of Mathematics, St. Stephen’s College (University of Delhi), University Enclave, North Campus, Delhi 110007, India https://orcid.org/0009-0001-5738-6755
  • Ashish Bansal Department of Mathematics, Keshav Mahavidyalaya (University of Delhi), H-4-5 Zone, Pitampura, Delhi 110034, India https://orcid.org/0000-0001-6507-0868

DOI:

https://doi.org/10.26713/jims.v17i3.3342

Abstract

Nazarov uncertainty principle is established for the Fourier transform and the continuous modulated shearlet transform on the groups of the form \(\mathbb{R}^n \times K\), where \(K\) is a locally compact group. As special cases, Nazarov uncertainty principle follows for the Gabor transform, the shearlet transform and the wavelet transform on these groups.

Downloads

Download data is not yet available.

References

M. Bahri, F. A. Shah and A. Y. Tantary, Uncertainty principles for the continuous shearlet transforms in arbitrary space dimensions, Integral Transforms and Special Functions 31(7) (2020), 538 – 555, DOI: 10.1080/10652469.2019.1707816.

P. Bansal, A. Kumar and A. Bansal, Continuous modulated shearlet transform, Advances in Pure and Applied Mathematics 13(4) (2022), 29 – 57, DOI: 10.21494/ISTE.OP.2022.0887.

P. Jaming, Nazarov’s uncertainty principles in higher dimension, Journal of Approximation Theory 149(1) (2007), 30 – 41, DOI: 10.1016/j.jat.2007.04.005.

F. L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5(4) (1993), 3 – 66.

F. A. Shah, K. S. Nisar, W. Z. Lone and A. Y. Tantary, Uncertainty principles for the quadratic-phase Fourier transforms, Mathematical Methods in the Applied Sciences 44(13) (2021), 10416 – 10431, DOI: 10.1002/mma.7417.

H. M. Srivastava, F. A. Shah, T. K. Garg, W. Z. Lone and H. L. Qadri, Non-separable linear canonical wavelet transform, Symmetry 13(11) (2021), 2182, DOI: 10.3390/sym13112182.

Q. Zhang, Zak transform and uncertainty principles associated with the linear canonical transform, IET Signal Processing 10(7) (2016), 791 – 797, DOI: 10.1049/iet-spr.2015.0514

Downloads

Published

2025-09-16
CITATION

How to Cite

Bansal, P., & Bansal, A. (2025). Nazarov Uncertainty Principle for Certain Lie Groups. Journal of Informatics and Mathematical Sciences, 17(3), 315–323. https://doi.org/10.26713/jims.v17i3.3342

Issue

Section

Research Article