The Ideal Structure of the Minimal Tensor Product of Ternary Rings of Operators

Authors

  • Arpit Kansal Department of Mathematics, Shyama Prasad Mukherji College for Women (University of Delhi), West Punjabi Bagh, Delhi 110026, India https://orcid.org/0009-0000-7973-1444
  • Vandana Rajpal Department of Mathematics, Shivaji College (University of Delhi), Shivaji Enclave, Raja Garden, Delhi 110027, India https://orcid.org/0009-0002-0210-1481

DOI:

https://doi.org/10.26713/jims.v17i3.3301

Abstract

Let \(V\) be a ternary ring of operator, and let \(B\) be a \(C^*\)-algebra. We study the structure of the ideal space of the operator space injective tensor product \(V \otimes^{\mathrm{tmin}} B\) via two maps:
\begin{align*}
\Phi(I, J) = \ker(q_I \otimes^{\mathrm{tmin}} q_J) \quad \text{and} \quad \Delta(I, J) = I \otimes^{\mathrm{tmin}} B + V \otimes^{\mathrm{tmin}} J.
\end{align*}
We prove that \(\Phi\) is continuous with respect to the hull-kernel topology, and that its restriction to primitive and prime ideals defines a homeomorphism onto dense subsets of the respective ideal spaces of \(V \otimes^{\mathrm{tmin}} B\). We prove that if \(\Phi = \Delta\), then \(\Phi\) induces a homeomorphism between the space of minimal primal ideals of \(V \otimes^{\mathrm{tmin}} B\) and the product of the spaces of minimal primal ideals of \(V \) and \(B\).

Downloads

Download data is not yet available.

References

R. J. Archbold, Continuous bundles of C∗-algebras and tensor products, The Quarterly Journal of Mathematics 50(198) (1999), 131 – 146, DOI: 10.1093/qjmath/50.198.131.

E. Blanchard and E. Kirchberg, Non-simple purely infinite C∗-algebras: The Hausdorff case, Journal of Functional Analysis 207(2) (2004), 461 – 513, DOI: 10.1016/j.jfa.2003.06.008.

E. G. Effros and Z.-J. Ruan, Operator Spaces, The Clarendon Press, New York, 363 pages (2000).

A. Guichardet, Tensor Product of C∗-algebras, Part I, Finite Tensor Products, Lecture Notes Series No. 12, (1969), URL: https://www.fuw.edu.pl/~kostecki/scans/guichardet1969.pdf.

M. Hamana, Injective envelopes of C∗ dynamical systems, Tohoku Mathematical Journal 37(4) (1985), 463 – 487, DOI: 10.2748/tmj/1178228589.

E. Kaniuth, Minimal primal ideal spaces and norms of inner derivations of tensor product of C∗-algebras, Mathematical Proceedings of the Cambridge Philosophical Society 119(2) (1996), 297 – 307, DOI: 10.1017/S030500410007417X.

A. Kansal, A. Kumar and V. Rajpal, Representations of C∗-ternary rings, Communications of the Korean Mathematical Society 38(1) (2023), 123 – 135, DOI: 10.4134/CKMS.c210437.

A. Kansal and A. Kumar, Ideals in Haagerup tensor product of C∗-ternary rings and TROs, Operators and Matrices 17(3) (2023), 731 – 748, DOI: 10.7153/oam-2023-17-48.

A. Kansal and A. Kumar, Haagerup tensor product of C∗-ternary rings, Journal of Mathematical Analysis and Applications 528(1) (2023), 127482, DOI: 10.1016/j.jmaa.2023.127482.

M. Kaur and Z.-J. Ruan, Local properties of ternary rings of operators and their linking C∗-algebras, Journal of Functional Analysis 195(2) (2002), 262 – 305, DOI: 10.1006/jfan.2002.3951.

A. J. Lazer, The space of ideals in the minimal tensor product of C∗-algebras, Mathematical Proceedings of the Cambridge Philosophical Society 148(2) (2010), 243 – 252, DOI: 10.1017/S0305004109990351.

D. McConnel, The Glimm space of the minimal tensor product of C∗-algebras, Journal of the London Mathematical Society 89(1) (2014), 69 – 96, DOI: 10.1112/jlms/jdt052.

R. C. Walker, The Stone–Cech compactification, in: ˇ Ergebnisse der Mathematik und ihrer Grenzgebiete, Volume 83, Springer, New York (1974).

A. Wulfsuin, Produit tensoriel de C∗-algebres, Bulletin of Mathematical Sciences 87 (1963), 13 – 27.

A. M. Zaki, Primal ideals and tensor products of C*-algebras, Journal of Mathematical and Physical Sciences 24 (1990), 171 – 176.

Downloads

Published

2025-09-16
CITATION

How to Cite

Kansal, A., & Rajpal, V. (2025). The Ideal Structure of the Minimal Tensor Product of Ternary Rings of Operators. Journal of Informatics and Mathematical Sciences, 17(3), 267–276. https://doi.org/10.26713/jims.v17i3.3301

Issue

Section

Research Article