Three New Min-Max Variations of the Hardy-Hilbert Integral Inequality

Authors

DOI:

https://doi.org/10.26713/jims.v17i3.3285

Abstract

 Building on the work of Li and He in 2007, this article presents three new variations of the Hardy-Hilbert integral inequality using minimum and maximum kernel functions. Detailed proofs are provided.

Downloads

Download data is not yet available.

References

L. E. Azar, On some extensions of Hardy-Hilbert’s inequality and applications, Journal of Inequalities and Applications 2008 (2008), Article ID 546829, DOI: 10.1155/2008/546829.

Q. Chen and B. C. Yang, A survey on the study of Hilbert-type inequalities, Journal of Inequalities and Applications 2015 (2015), Article number: 302, DOI: 10.1186/s13660-015-0829-7

C. Chesneau, Refining and extending two special Hardy-Hilbert-type integral inequalities, Annals of Mathematics and Computer Science 28 (2025), 21 – 45, DOI: 10.56947/amcs.v28.513

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, (1934).

Y. Li and B. He, On inequalities of Hilbert’s type, Bulletin of the Australian Mathematical Society 76(1) (2007), 1 – 13.

Y. Li, J. Wu and B. He, A new Hilbert-type integral inequality and the equivalent form, International Journal of Mathematics and Mathematical Sciences 2006(1) (2006), 045378, DOI: 10.1155/IJMMS/2006/45378.

A. Saglam, H. Yildirim and M. Z. Sarikaya, Generalization of Hardy-Hilbert’s inequality and applications, Kyungpook Mathematical Journal 50(1) (2010), 131 – 152, DOI: 10.5666/KMJ.2010.50.1.131

M. Z. Sarikaya and M. S. Bingol, Recent developments of integral inequalities of the Hardy-Hilbert type, Turkish Journal of Inequalities 8(2) (2024), 43 – 54, URL: https://www.tjinequality.com/articles/08-02-005.pdf.

W. T. Sulaiman, New Hardy-Hilbert’s-type integral inequalities, International Mathematics Forum 3(43) (2008), 2139 – 2147.

W. T. Sulaiman, New kinds of Hardy-Hilbert’s integral inequalities, Applied Mathematics Letters 23(4) (2010), 361 – 365, DOI: 10.1016/j.aml.2009.10.011.

W. T. Sulaiman, An extension of Hardy-Hilbert’s integral inequality, African Diaspora Journal of Mathematics 10(2) (2010), 66 – 71.

W. T. Sulaiman, Hardy-Hilbert’s integral inequality in new kinds, Mathematical Communications 15(2) (2010), 453 – 461, URL: https://hrcak.srce.hr/file/92652.

B. Sun, Best generalization of a Hilbert type inequality, Journal of Inequalities in Pure and Applied Mathematics 7(3) (2006), Article 113, URL: https://emis.dsd.sztaki.hu/journals/JIPAM/images/007_06_JIPAM/007_06.pdf.

B. C. Yang, Hilbert-Type Integral Inequalities, Bentham Science Publishers, The United Arab Emirates (2009).

B. C. Yang, The Norm of Operator and Hilbert-Type Inequalities, Science Press, Beijing (2009).

Downloads

Published

2025-09-16
CITATION

How to Cite

Chesneau, C. (2025). Three New Min-Max Variations of the Hardy-Hilbert Integral Inequality. Journal of Informatics and Mathematical Sciences, 17(3), 255–265. https://doi.org/10.26713/jims.v17i3.3285

Issue

Section

Research Article