Mean Inequalities for Derivatives of the Generalised Exponential Integral Function

Authors

  • Rahamatu Iddi Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana https://orcid.org/0009-0002-9421-1214
  • Kwara Nantomah Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana https://orcid.org/0000-0003-0911-9537
  • Morgan Yindobil Zubil Department of Mathematics, School of Mathematical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana https://orcid.org/0009-0007-1352-6473
  • Christophe Chesneau Department of Mathematics, LMNO, University of Caen-Normandie, 14032 Caen, France https://orcid.org/0000-0002-1522-9292

DOI:

https://doi.org/10.26713/jims.v17i3.3256

Abstract

In this paper, among other things, we establish arithmetic, geometric and harmonic mean inequalities for derivatives of the generalised exponential integral function. The methods of proof rely heavily on monotonicity properties of certain functions associated with the generalised exponential integral function. The results obtained generalise some existing results in the literature.

Downloads

Download data is not yet available.

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York, (1965).

D. A. Barry, J.-Y. Parlange and L. Li, Approximation for the exponential integral (Theis well function), Journal of Hydrology 227(1-4) (2000), 287 – 291, DOI: 10.1016/S0022-1694(99)00184-5.

P. K. Bhandari and S. K. Bissu, On some inequalities involving Turan-type inequalities, Cogent Mathematics 3(1) (2016), Article: 1130678, DOI: 10.1080/23311835.2015.1130678.

M. Bouali, A harmonic mean inequality for the q-gamma and q-digamma functions, Filomat 35(12) (2021), 4105 – 4119, DOI: 10.2298/FIL2112105B.

C. Chiccoli, S. Lorenzutta and G. Maino, Recent results for generalized exponential integrals, Computers & Mathematics with Applications 19(5) (1990), 21 – 29, DOI: 10.1016/0898-1221(90)90098-5.

C. Chiccoli, S. Lorenzutta and G. Maino, Concerning some integrals of the generalized exponential-integral function, Computers & Mathematics with Applications 23(11) (1992), 13 – 21, DOI: 10.1016/0898-1221(92)90065-P.

G. J. O. Jameson, The incomplete gamma functions, The Mathematical Gazette 100(548) (2016), 298 – 306, DOI: 10.1017/mag.2016.67.

W.-H. Li and F. Qi, Harmonic mean inequalities for generalized hyperbolic functions, Montes Taurus Journal of Pure and Applied Mathematics 6(3) (2024), 199 – 207, URL: https://mtjpamjournal.com/wp-content/uploads/2024/06/MTJPAM-D-23-00053.pdf.

S.-D. Lin, Y.-S. Chao and H. M. Srivastava, Some expansions of the exponential integral in series of the incomplete Gamma function, Applied Mathematics Letters 18(5) (2005), 513 – 520, DOI: 10.1016/j.aml.2004.03.016.

L. Matejícka, Proof of a conjecture on Nielsen’s ˇ β-function, Problemy Analiza-Issues of Analysis 8(26)(3) (2019), 105 – 111, DOI: 10.15393/j3.art.2019.6810.

K. Nantomah, A harmonic mean inequality for the exponential integral function, International Journal of Applied Mathematics 34(4) (2021), 647 – 652, DOI: 10.12732/ijam.v34i4.4.

K. Nantomah, A harmonic mean inequality concerning the generalized exponential integral function, Advances in Mathematics: Scientific Journal 10(9) (2021), 3227 – 3231, DOI: 10.37418/amsj.10.9.11.

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (editors), NIST Handbook of Mathematical Functions, Cambridge University Press, London, (2010).

I. Pinelis, L’hospital type rules for monotonicity, with applications, Journal of Inequalities in Pure and Applied Mathematics 3(1) (2002), Article 5, URL: https://www.emis.de/journals/JIPAM/images/010_01_JIPAM/010_01.pdf.

F. E. Prym, Zur Theorie der Gamma funktion, Journal für die reine und angewandte Mathematik 82(1877), 165 – 172.

A. Salem, A q-analogue of the exponential integral, Afrika Matematika 24 (2013), 117 – 125, DOI: 10.1007/s13370-011-0046-6.

B. Sroysang, On the n-th derivative of the exponential integral functions, Communications in Mathematics and Applications 4(2) (2013), 141 – 144, DOI: 10.26713/cma.v4i2.170.

W. T. Sulaiman, Turan inequalities for the exponential integral functions, Communications in Optimization Theory 1 (2012), 35 – 41, https://cot.mathres.org/issues/COT201203.pdf.

E. Yildirim, Monotonicity properties on k-digamma function and its related inequalities, Journal of Mathematical Inequalities 14(1) (2020), 161 – 173, DOI: 10.7153/jmi-2020-14-12.

L. Yin, L.-G. Huang, X.-L. Lin and Y.-L. Wang, Monotonicity, concavity, and inequalities related to the generalized digamma function, Advances in Difference Equations 2018 (2018), Article number: 246, DOI: 10.1186/s13662-018-1695-7.

T. Zenku, B. Jolevska-Tuneska and N. Tuneski, Results on the exponential integral, Sarajevo Journal of Mathematics 13(25)(1) (2017), 71 – 80, DOI: 10.5644/sjm.13.1.05.

Downloads

Published

2025-09-16
CITATION

How to Cite

Iddi, R., Nantomah, K., Zubil, M. Y., & Chesneau, C. (2025). Mean Inequalities for Derivatives of the Generalised Exponential Integral Function. Journal of Informatics and Mathematical Sciences, 17(3), 277–285. https://doi.org/10.26713/jims.v17i3.3256

Issue

Section

Research Article