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1. Introduction

Integral inequalities inspired by the Hardy-Hilbert integral framework are fundamental
tools in modern analysis. They provide precise upper bounds that are essential for solving
a variety of mathematical problems in areas such as operator theory, functional analysis,
partial differential equations and mathematical physics. Further details can be found in the
following references: Chen and Yang [2], and Yang [14,(15]. Classical variants of Hardy-Hilbert
integral inequalities are based on a kernel function involving the maximum of two variables, i.e.,
max(x,y), where x and y denote the two variables. These inequalities naturally arise in contexts
where symmetrisation or duality arguments are used. One of the simplest results of this type is
described below and is due to Hardy et al. [4]. Let p > 1, g = p/(p — 1) be the Holder conjugate of
p,ie,l/p+1/g=1,and f,g:(0,+00) — (0,+00) be two functions. Then, the following inequality


http://doi.org/10.26713/jims.v17i3.3285
https://orcid.org/0000-0002-1522-9292

256 Three New Min-Max Variations of the Hardy-Hilbert Integral Inequality: C. Chesneau

holds:

1/p ] 1/q

f)gy)dxdy < pq , (1.1)

1
f f — f FP()dx f g9(ydy
(0,+00) J(0,+00) max(x, y) (0,+00) (0,+00)

provided that the two integrals involved in the upper bound converge. This result is interesting
because it clearly demonstrates the interaction between the kernel function 1/max(x,y) and
integral norms. This kernel function also ensures symmetry and homogeneity, which are
both essential characteristics in numerous applications, including interpolation theory and
the boundedness of bilinear operators. Furthermore, the sharp constant factor pq reflects
the best possible bound given the assumptions made, emphasizing the extremal nature of the
inequality.

This result has been extended by considering more general kernel functions, weighted
integrals, and multidimensional analogues. Versions involving the minimum and maximum of
variables, logarithmic and fractional power modifications, in particular, provide deeper insight
into the structure of functional spaces. Further information on these aspects can be found in
the following references: Azar [1], Chesneau [3], Li and He [5], Li et al. [6l]l, Saglam et al. [|7]],
Sarikaya and Bingol [8]], Sulaiman [9+H12], and Sun [13].

In this article, we highlight a technical result from [5]], which can be viewed as a natural
minimum counterpart to eq. (1.1). It is given formally below.

Theorem 1.1 ([5, Theorem 2.1]). Let p >1, g = p/(p —1) and f,g :(1,+00) — (0,+00) be two
functions. Then, we have

1
f f L fweydxdy
(1,4+00) J(1,+00) min(x, y)
xP + —) dx
1

1 1
[ e [ e (yq v —) dy
(1,+00) p- (1,+00) q-1

S —_—
D 1/p q 1/q
provided that the two integrals involved in the upper bound converge.

1/p

>

ll/q

Unlike eq. (1.1), the kernel function 1/min(x,y) exhibits distinct behavior that is sensitive
to the integrability properties of functions near +oco. Furthermore, Theorem involves the
weighted integral norms of / and g, where the weight functions are x” +1/(p—1) and y?+1/(g—1),
respectively. They arise naturally in the analysis and are essential for capturing the balance
between decay at +oco and integrability. The sharp constant factor 1/(p/?¢?) emphasizes the
optimality of the inequality under the stated assumptions. Inequalities of this kind are closely
related to rearrangement inequalities, monotonicity methods and certain classes of integral
operators whose boundedness cannot be captured solely through classical integral theory.

In what follows, we propose three new minimum-maximum (min-max) variations of
the inequality stated in Theorem Each variation is based on a distinct kernel function
introducing refined structural properties to the inequality. These kernel functions are given by
k()= min(x/y, y/x)’

1
min(x, y)max(x/y, y/x)

ka(x,y) =
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and
a

k3(x,y) =

>

5
max|—, =
y X
respectively, where a denotes an adjustable parameter. These modifications produce new
Hardy-Hilbert-type integral inequalities, thereby extending the existing theory. They also
open up potential avenues for applications in weighted norm inequalities, symmetric and
quasi-symmetric function spaces, and the analysis of bilinear forms.

The remainder of the article is as follows: Sections and 4] are devoted to the first, second
and third min-max variations. A conclusion is given in Section

2. First Variation
The theorem below presents our main result concerning the first variation.

Theorem 2.1. Let p>1, g =p/p—1) and f,g:(1,+00) — (0,+00) be two functions. Then, we
have

f f ——————f(Wg(ydady
(1,+00) J(1,+00) min(x/y, y/x)

1 1 1
f fp(x)x(x2p+ )dx f gl(y)y (y2q+—)dy
(1,4+00) p-1 (1,+00) q-1

S —_—
2 D 1/p q 1/q
provided that the two integrals involved in the upper bound converge.

1/p

>

]l/q

Proof. By a suitable decomposition of the integrand and the application of the Hoélder integral
inequality using 1/p + 1/q = 1, we have

1
f f —————=f(0)g(y)dxdy
(1,+00) J(1,+00) Min(x/y, y/x)

1 X 2 1 y 2
B - Y dxd
f(lﬁoo)f(lﬁoo) [min(x/y, y/x)]V/P (y) f(x)[min(x/y,y/x)]l/q (x) g(y)dxdy

<AVrgla (2.1)

where

1 x\2P
A= f f —(—) FP(x)dxdy
(1,+00) J(1,+00) Min(x/y, y/x) \ y

and
1
e[ [ L
(1,+00) J(1,+00) MIn(x/y, y/x) \x
Let us investigate the exact expressions for A and B in turn.

2q
) gl(y)dxdy.

For A, by the Fubini-Tonelli integral theorem, we can write
A= xfP(x)

[ovommtrmls)
— 2] Zay

(1,400) (1,+00) Min(x/y, y/x) \ y x

Let us now focus on the central integral. Performing the change of variables u = y/x and using

standard primitives together with p > 1, we get

dx.

1 x\?? 1 1
[l 1,
(1,+00) Min(x/y, y/x) \y) x (1/x,+00) Min(u, 1/u)u?P
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1 1
(1/x,1) min(u, 1/u)u?P (1,+00) Min(u, 1/u)u?P

1 1
B R e
(1/x,1) U X u“P (1,4+00) /u x u4P

:f u_zp_ldu+f u2Ptlgy
(1/x,1) (1,4+00)

_ [_iu—zp N [_;u—zw—n
2p (1/x,1) 2p-1) (1,4+00)
1 1
= — ¥ -1)+
2p 2(p-1)
1
_ L (x2p 2 ) .
2p p—-1
Therefore, we have
1 1
A= xfP(x)— (x2p+—)dx
(1,400) 2p -1

1 1
= —f fP(x)x (x2p+—)dx.
2p Ja,+00) p-1

(2.2)

For B, we proceed in a similar way. By the Fubini-Tonelli integral theorem, we can write

B= y81(y) dy.

(1,4+00)

1 yy2¢ 1
[
(1,+00) Min(x/y, y/x) \x/ y

Let us now focus on the central integral. Performing the change of variables v = x/y and using

standard primitives together with ¢ > 1, we get

1 y\2a¢ 1 1
f TN (—) —dx = f —2dv
(1,+00) Min(x/y, y/x) \x/ y (1/y,+00) Min(v, 1/v)v24

1 1
O 1,
(1/y,1) min(v, 1/v)v29 (1,+00) min(v, 1/v)v2e

1 1
:f ) dU +f —2 dv
(1/y,1) U x 049 (1,+00) 1/v x v%4

:[ v_zq_ldv+f v 22+ gy
(1/y,1) (1,400)

1 1
_ [ —2q U—2(q—1)

B P ; [_
(1/y,1) 2(q—-1)

2q

(1,+00)

_i 2q _
“2¢Y Vo

Therefore, we have

1
B :f ygi(y)— (yzq + —) dy
(1,+00) 2q q

1

1
=— gl (y)y (yzq + —) dy.
2q J(1,+o0) q-
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Using egs. (2.1), (2.2) and (2.3), and 1/p + 1/q = 1, we get

1
f f ————f(x)g(y)dxdy
(1,+00) J(1,+00) MIN(x/y, y/x)

1 l/p

1 1
—f fP(x)x (x2p + )dx
2p Ja,+00) p-1

1
— f gl(y)y (yz" + —) dy
2q J,+00) qg—1

<

]l/q

1 D op 1 vp g 9, 1 Ve
L el e Y[ ol Lo
2pYPqta f(1,+oo>f p-1 are0® T 1)
This completes the proof of Theorem O

The obtained result is similar to that in Theorem [1.1, with notable changes to both the kernel
function and the structure of the weighted norms. Specifically, the kernel function 1/min(x/y, y/x)
reflects a form of scale sensitivity, which is manifested in weights involving x2? and y29, as well
as x and y factors in the integrals. These additional factors amplify the effect of large values
of x and y, thereby emphasizing different integrability conditions compared to Theorem
Moreover, the sharp constant factor 1/(2pY?¢/?) reveals the increased complexity of the kernel
function. The structure of the inequality suggests connections with weighted Hardy-type integral
inequalities and opens potential avenues for exploring symmetry-invariant forms in functional
analysis.

As an aside, we can observe that the kernel function under consideration can be expressed
in the following maximum form:

1 xy
s~ 3] o
This remark leads to a more general variation in Section |4] depending on one adjustable
parameter.

3. Second Variation

The theorem below presents our main result concerning the second variation.

Theorem 3.1. Let p>1, g=p/(p—1) and f,g:(1,+00) — (0,+00) be two functions. Then, we
have

1
- (x)g(y)dxd
f(1,+oo) f(1,+oo> mm(x,y)maX(x/y,y/x)f & Y

1 1 1
D p-1_—\g f q ( g-1_ _) p
(p—1)Vp(qg—1)a »[(1,+oo)f (x)(x p) x (1,+oo)g |y . y

provided that the two integrals involved in the upper bound converge.

1/p

<
— ’

] 1/q

Proof. By a suitable decomposition of the integrand and the application of the Holder integral
inequality using 1/p + 1/q = 1, we have

1
f f . fFg(dxdy
(1,4+00) J(1,+00) Min(x, y) max(x/y, y/x)

B 1 x 1 y
B f(1,+oo) f(1,+oo) [min(x, y) max(x/y, y/x)]VP ( y) f) [min(x, y) max(x/y, y/x)]V4 (x ) gly)dxdy

<cVrpVe (3.1
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where
1

B N -
(1,+00) J(1,400) Min(x, y) max(x/y, y/x)

x\P
(—) fP(x)dxdy
Yy

and

1 LAY
D= f f _ N g9()dxdy.
(1,+00) J(1,+00) mln(x,y)max(x/y,y/x)(x) g'(y) Y

Let us investigate the exact expressions for C and D in turn.
For C, by the Fubini-Tonelli integral theorem, we can write

C= fP(x) dx.

(1,+00)

J o)
(1,+00) Min(1, y/x) max(x/y,y/x) \y) x Y

Let us now focus on the central integral. Performing the change of variables u = y/x and using

standard primitives together with p > 1, we get

J ) 5
(1,+00) Min(1, y/x) max(x/y,y/x) \y) x Y

1
B f(l/x,+oo) min(1, v)max(u, 1/u)u?

1 1
:f —du +f —  du
Wz, u x (Vu) x uP (1,400) L X u x uP

u_pdu+f u~ @Dy
(1/x,1) (1,+00)

— [_ 1 u_p+1 + _lu_p
p-1 (Ux,1) p (1,400)
1 1
= P l-1+=
- p
L (o)
p-1 p
Therefore, we have
1 1
C= £P(x) (xp—l - —) dx
(1,+00) p-1 p
1 1
=— fp(x)(xp_l——) dx.
P —1Ja,+00) p
For D, we proceed in a similar way. By the Fubini-Tonelli integral theorem, we can write
1 yye 1
D= a(y) f : NV Zax|dy.
(1,+oo)g Y (1,+00) Min(1, x/y)max(x/y, y/x) (x) y Y

1 1
= du+ f
f(l/x,l) min(1,u)max(u,1/u)u? “ (1,+00) Min(1,u)max(u, 1/u)uP

(3.2)

Let us now focus on the central integral. Performing the change of variables v = x/y and using

standard primitives together with ¢ > 1, we get

—| —ax
(1,+00) min(1,x/y) max(x/y, y/x) \x/ y

1
B f(l/y,+oo) min(1,v)max(v,1/v)v?
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1 1
:f - dU +‘[ - dU
(1/y,1) min(1,v)max(v, 1/v)v? (1,+00) Min(1,v) max(v, 1/v)v?

1 1
- f S f 1
(/y,1) U % (1/v) x v (1,400) 1 X U x VP

:f v_qdv+f v @y
(1/y,1) (1,+00)

= [_Lv_q*_l + __v_q
q-1 Uy, 1) q (1,400)
1 1
= —(yq_l —_ 1) + —
q-1 q
= 1 (yq—l - 1) .
q-1 q
Therefore, we have
1 1
D= gl(y)— (yq_l - —) dy
(1,+00) qg-1 q
B 1
=— g%(y) (yq T —) dy. (3.3)
q-1Ja,+00) q

It follows from eqs. (3.1), (3.2) and (3.3), that

1
f f | F@)g(y)dxdy
(1,400) J(1,+00) min(x, y) max(x/y, y/x)
1/p

1 1 1 Vg
< fp(x)(xp_l——)dx — gq(y)(yq_l——)dy]
P—1Ja,+00) p q—1Ja,+00) q
1 D p-1 1 v q q-1 1 va
= (x)(x_ ——)dx f ( )( - ——)d ]
(p-DVP(q— DV fu,m)f p 1ot D0 ")
This completes the proof of Theorem O
We can observe that the kernel function under consideration can be expressed as follows:
1 _ min(x/y,y/x) _ 1
min(x, y)max(x/y, y/x)  min(x,y)  max(x,y)

In light of this, Theorem mainly differs from eq. in terms of the domain of integration,
i.e., (1,+00)?, and on the weight functions involved in the upper bound. These weight functions
now involve expressions of the form x?~1—1/p and y?~1—1/q. Unlike simpler polynomial weights,
these expressions introduce a more refined penalization depending on the growth of x and y.
In this sense, Theorem [3.1] can be viewed as a hybrid variation of eq. and Theorem

4. Third Variation

The theorem below presents our main result concerning the third and last variation.

Theorem 4.1. Let p>1, g =p/(p—1), a,B >0 such that Bmin(p,q)>a+1, and f,g:(1,+00) —
(0, +00) be two functions. Then, we have

f f max(f,z)] f(x)g(y)dxdy
(1,+00) J(1,+00) y X
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1 ]./p

= (a+Bp-DVP(a+ Bg—-1)Va

2
f g4(y)y (ya+ﬁq—1+—a) dy
(1,+00) Bg—a-1

provided that the two integrals involved in the upper bound converge.

f P (x)x (x””ﬁp_l + 2—a) dx
(1,+00) pp-a-1

1/q

X 2

Proof. By a suitable decomposition of the integrand using 1 = (x/y)?(y/x)? and the application
of the Holder integral inequality using 1/p + 1/q = 1, we have

f f max(f,z) F(x)g(y)dxdy
(1,+00) J(1,+00) y X

alp B alq B
f f max( y) (f) f(x) max(f,z)] (Z) g(y)dxdy
(1,+00) J(1,+00) y X y y X X
<EYPFYVa, (4.1)
where
r a Bp
E = f f max(f,z) (f) fP(x)dxdy
(1,+00) J(1,+00) | y x Yy

. .o
F= f f max(f,z) (2) ! 29(y)dxdy.
1,400) J(1,+00) L y X X

Let us investigate the exact expressions for £ and F in turn.
For E, by the Fubini-Tonelli integral theorem, we can write
E = xfp(x){f max(f,z) (_)ﬁp 1dy}dx
(1,+00) (1,+00) y X y
Let us now focus on the central integral. Performing the change of variables u = y/x and using
standard primitives together with fp > a +1, we get

foa (320G
max|—,= - —=dy
(1,+00) y x Y X
_f ¢ 1
B (1/x,+00)

(1 )
max|—,u
u
1 \]* 1
:f max(—,u) —du+f
(/1) u ubp (1,400)
1

1 1
= ——du+f u*—du
(1/x,1) u® uhpP (1400) ubP

= u_“_ﬁpdu+f u*Prqy
(1/x,1) (1,+00)

1
-a—-pp+1
b ey 1
a+pp-1 a—pPp+1
;(xa+ﬁp—1+2—“).
a+pfp-1 Pp—a-1
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[
max|—,u
u

1

u—a—ﬁp+1 —ua—ﬁp+1
a—pPp+1

+
(1/x,1)

(1,4+00)
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Therefore, we have

E= xfp(x)—1 (x‘”ﬁp_l + _ 2o )dx
(1,+00) a+pp-1 pp-a-1
1 2a
=— P(x)x (xa+ﬁp_1 + —) dx. 4.2)
a+pp-1 (1,+oo)f Bp—a-1

For F', we proceed in a similar way. By the Fubini-Tonelli integral theorem, we can write
X “y\Pal
F= ygq(y){f maX(—,X) (Z) —dx}dy.
(1,+00) (1,+00) y X X Yy
Let us now focus on the central integral. Performing the change of variables v = x/y and using
standard primitives together with g > a + 1, we get

@ y\Ba 1
f max(f,z) () Lax
(1,+00) A x)
Jur =) 5
= max|v,~ || ——dv
(1/y,+00) v)| vPa
1)1 1 1\1¢ 1
:f max(v,—) —dv +/ max (v,—) —dv
(1/y,1) v)] vhe (1,+00) v)| vha
11 1
=f ——dv+f v*—dv
sy, v¥ vPe (L+oo) P4
:f v_“_ﬁqdv+f v Paqy
(1/y,1) (1,400)
— 1 v—a—ﬁq+1 + 1 Ua—ﬁq+1
—a—Pg+1 1y, Lla—pg+1 (1,+00)
= ;(y“ﬁq—l —1)- 1
a+pg—-1 a—Pg+1
= ; (ya"'ﬁq_l + 2a ) .
a+pg-1 Bfg—a-1
Therefore, we have
1 2a
F-= 7 )—( “+/3q-1+—)d
Lo S atPg-10 fg-a-1)
1 f q ( 1 2a
=— Wy [y* P+ ———|dy. (4.3)
a+pfg-1 (1,+oo)g et Bg—a-1 Y
Using eqs. (4.1), (4.2) and (4.3), we get
a
f f max(—,z)] Fx)g(y)dxdy
(1,+00) J(1,+00) vy x
1/p
= ;f fP(x)x (x“*ﬁp‘1+2—a)dx
a+pp—1Ja,+00) Bp—a—1
1 1/q

2a
- - 9(y) ( atfg-1 )d
a+ﬁq—1fa,+oo>g v pg-a-1/"

1 2a
= p a+Pfp-1
(a+Bp—-DVP(a+Bg-1)a f(1,+oo)f (o) (x i ﬁp—a—l)dx

1/p
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1 2a 1/q
x f g1(y)y (y"”ﬁq_ + —) dy]
(1,+00) Bg-a-1
This completes the proof of Theorem O

If we take @ = 1 and 8 = 2, Theorem 4.1 reduces to Theorem taking into account the
remark in eq. (2.4). Thus, Theorem can be viewed as a one-parameter generalization with
respect to a, B being another adjustable parameter independent of the kernel function.

5. Conclusion

This article expands upon a fundamental inequality by introducing new variations that advance
our understanding of min-max kernel functions and their integral behavior. The proposed
extensions reveal the subtle interactions between kernel function structures and weighted
norms, suggesting the existence of richer analytic frameworks. These developments pave
the way for future exploration in related function spaces and operator theory.
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