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Abstract. In this paper, among other things, we establish arithmetic, geometric and harmonic mean
inequalities for derivatives of the generalised exponential integral function. The methods of proof rely
heavily on monotonicity properties of certain functions associated with the generalised exponential
integral function. The results obtained generalise some existing results in the literature.
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1. Introduction
The Euler’s integral of second kind, which is commonly referred to as the gamma function, is
defined as

Γ(u)=
∫ ∞

0
tu−1e−t dt,

http://doi.org/10.26713/jims.v17i3.3256
https://orcid.org/0009-0002-9421-1214
https://orcid.org/0000-0003-0911-9537
https://orcid.org/0009-0007-1352-6473
https://orcid.org/0000-0002-1522-9292


278 Mean Inequalities for Derivatives of the Generalised Exponential Integral Function: R. Iddi et al.

for u > 0 and satisfies the basic properties

Γ(u+1)= uΓ(u),

Γ(s+1)= s!, s ∈N0,

where N0 = N ∪ {0} and N = {1,2,3, . . . }. It is frequently chanced upon in the theory of
special functions. This is largely due to its strong relationship with other special functions.
Its applications span across almost every scientific discipline. The upper incomplete gamma
function is defined as

Γ(u, y)=
∫ ∞

y
tu−1e−t dt, (1.1)

for u > 0, whilst the lower incomplete gamma function is defined as

γ(u, y)=
∫ y

0
tu−1e−t dt, (1.2)

for u > 0. It is easily observed that

γ(u, y)+Γ(u, y)=Γ(u). (1.3)

The incomplete gamma functions are non-trivial generalisations of the ordinary gamma function.
A lot of their special cases have applications in areas such as statistics, probability theory,
mathematical physics and engineering. They were first considered by Prym [15] and as result,
they are also called Prym’s functions. For the purpose of this study, we are interested in the
upper incomplete gamma function. It satisfies the following properties among others [7,13]

Γ(u+1, y)= uΓ(u, y)+ yue−y, (1.4)
∂

∂y
Γ(u, y)=−yu−1e−y, (1.5)

Γ(m, y)= (m−1)!e−y
m−1∑
s=0

ys

s!
, m ∈N. (1.6)

Closely connected to the upper incomplete gamma function is the classical exponential integral
function which is defined as [1, p. 228],

E(y)=
∫ ∞

y

e−t

t
dt (1.7)

=
∫ ∞

1

e−yt

t
dt (1.8)

=Γ(0, y), for y> 0. (1.9)

A generalised version of the exponential integral function is defined as [6,13],

Ek(y)= yk−1
∫ ∞

y

e−t

tk dt (1.10)

=
∫ ∞

1

e−yt

tk dt (1.11)

= yk−1Γ(1−k, y), (1.12)

for y> 0, where k ∈ (−∞,∞). The particular case E1(z)= E(z) is otherwise known as the Theis
well function [2].
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Derivatives of the generalised exponential integral function are given as [6]

E(r)
k (y)= (−1)r

∫ ∞

1
tr−ke−yt dt (1.13)

= (−1)rEk−r(y) (1.14)

= (−1)r yk−(r+1)Γ(1−k+ r, y). (1.15)

The exponential integral function has many applications in areas such as transient
groundwater flow, hydrological problems, mathematical physics, engineering, quantum
mechanics, and applied mathematics. Due to this, it has been studied along different directions.
Interested readers may refer to Barry et al. [2], Bhandari and Bissu [3], Chiccoli et al. [5], Lin et
al. [9], Salem [16], Sroysang [17], Sulaiman [18], Zenku et al. [21] and the references in there.

Nantomah [11] established the following mean inequalities,

E(y)+E
(

1
y

)
≥ 2Γ(0,1), y> 0, (1.16)

E(y)E
(

1
y

)
≤Γ(0,1)2, y> 0, (1.17)

2E(y)E(1/y)
E(y)+E(1/y)

≤Γ(0,1), y> 0. (1.18)

Later on, Nantomah [12] extended (1.18) to the generalised exponential integral function by
proving that

2Ek(y)Ek(1/y)
Ek(y)+Ek(1/y)

≤Γ(1−k,1), y> 0, k ∈N. (1.19)

Motivated by the works [11] and [12], the goal of this paper is to, among other things, extend
(1.16), (1.17) and (1.18) to derivatives of the generalised exponential integral function. Results of
this nature, concerning other special functions can be found in the works of Bouali et al. [4],
Li and Qi [8], Matejícka [10], Yildirim [19], Yin et al. [20]. We present our results in the next
section.

2. Results and Discussion
We begin with the following result which is known in the literature as l’Hospital rule for
monotonicy.

Lemma 2.1 ([14]). Let −∞ ≤ α < β ≤ ∞ and f and g be continuous functions that are
differentiable on (α,β), with f (α+) = g(α+) = 0 or f (β−) = g(β−) = 0. Suppose that g(y) and
g′(y) are nonzero for all y ∈ (α,β). If f ′(y)

g′(y) is decreasing (or increasing) on (α,β), then f (y)
g(y) is also

decreasing (or increasing) on (α,β), respectively.

Lemma 2.2. For m ∈N, the assertion

Γ(m, y)−Γ(m+1, y)< 0 (2.1)

is true, that is, for a positive integers m, the function Γ(m, y) is increasing in terms of m.
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Proof. By applying (1.6), we have

Γ(m, y)−Γ(m+1, y)= (m−1)!e−y
m−1∑
s=0

ys

s!
−m!e−y

m∑
s=0

ys

s!

= (m−1)!e−y
m−1∑
s=0

ys

s!
−m!e−y

[
m−1∑
s=0

ys

s!
+ ym

m!

]

= (m−1)!e−y
m−1∑
s=0

ys

s!
−m!e−y

m−1∑
s=0

ys

s!
− yme−y

= (1−m)(m−1)!e−y
m−1∑
s=0

ys

s!
− yme−y

< 0.

Lemma 2.3. Let y> 0, r ∈N0 and k ∈N such that r−k+1≥ 0. Then, the function

P(y)= yE(r+1)
k (y) (2.2)

is increasing if r is even and is decreasing if r is odd.

Proof. By differentiating and applying (1.14), we have

P ′(y)= E(r+1)
k (y)+ yE(r+2)

k (y)

= (−1)r+1Ek−(r+1)(y)+ y(−1)r+2Ek−(r+2)(y)

:=φ(y).

Suppose that r is even. Then with the aid of identity (1.15) and Lemma 2.2, we arrive at

φ(y)=−Ek−(r+1)(y)+ yEk−(r+2)(y)

= yk−r−2 [Γ(r−k+3, y)−Γ(r−k+2, y)]

> 0.

By the same procedure, if r is odd, then we arrive at φ(y)< 0.

Theorem 2.1. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then

E(r)
k (y)+E(r)

k

(
1
y

)
≥ 2Γ(r−k+1,1) (2.3)

holds if r is even, and

E(r)
k (y)+E(r)

k

(
1
y

)
≤−2Γ(r−k+1,1) (2.4)

holds if r is odd. In both cases, equality occurs if y= 1.

Proof. The cases for y= 1 are easy to establish. For this reason, we shall prove the results for
only y ∈ (0,1)∪ (1,∞). Let A(y)= E(r)

k (y)+E(r)
k (1/y) for y ∈ (0,1)∪ (1,∞), r ∈N0 and k ∈N. Since

A(y) remains the same when y is replaced with 1/y, it suffices to prove the results (2.3) and
(2.4) for y ∈ (1,∞). Now suppose that y ∈ (1,∞). Upon differentiating, we obtain

yA′(y)= yE(r+1)
k (y)− 1

y
E(r+1)

k

(
1
y

)
:= h(y).
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At this stage, suppose that r is even. Then, the increasing property of the function P(y) in
Lemma 2.3 implies that, for y> 1/y, we have P(y)> P(1/y). Thus, h(y)> 0 and accordingly, A(y)
is increasing.
Therefore, for y ∈ (1,∞), we have

A(y)> lim
y→1+A(y)= 2E(r)

k (1)= 2Γ(r−k+1,1),

which gives rise to (2.3). Likewise, suppose that r is odd. Then, the decreasing property of
the function P(y) in Lemma 2.3 implies that, for y> 1/y, we have P(y)< P(1/y). Thus, h(y)< 0
and accordingly, A(y) is decreasing. Therefore, for y ∈ (1,∞), we have

A(y)< lim
y→1+A(y)=−2E(r)

k (1)=−2Γ(r−k+1,1),

which gives rise to (2.4).

Lemma 2.4. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then, the function

B(y)= y
E(r+1)

k (y)

E(r)
k (y)

(2.5)

is decreasing.

Proof. With the aid of identity (1.15), we have

−B(y)=− yE(r+1)
k (y)

E(r)
k (y)

= Γ(r−k+2, y)
Γ(r−k+1, y)

= f1(y)
g1(y)

,

where f1(y)=Γ(r−k+2, y), g1(y)=Γ(r−k+1, y) and f1(∞)= g1(∞)= 0. Then
f ′1(y)
g′

1(y)
= −e−y yr−k+1

−e−y yr−k = y

and ( f ′1(y)
g′

1(y)

)′
= 1> 0.

Hence,
f ′1(y)
g′

1(y) is increasing and by Lemma 2.1, −B(y) is increasing. Therefore, B(y) is
decreasing.

Theorem 2.2. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then

E(r)
k (y)E(r)

k

(
1
y

)
≤Γ(r−k+1,1)2. (2.6)

Equality occurs if y= 1.

Proof. The case for y = 1 is easy to establish. Due to this, we shall prove the results for only
y ∈ (0,1)∪ (1,∞). Let G(y) = E(r)

k (y)E(r)
k (1/y) for y ∈ (0,1)∪ (1,∞), r ∈ N0 and k ∈ N. Since G(y)

remains the same when y is replaced with 1/y, it suffices to prove the result (2.6) for y ∈ (1,∞).
Now let y ∈ (1,∞). After differentiating and rearranging, we obtain

y
G′(y)
G(y)

= y
E(r+1)

k (y)

E(r)
k (y)

− 1
y

E(r+1)
k (1/y)

E(r)
k (1/y)

:=α(y).
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The decreasing property of the function B(y) in Lemma 2.4 implies that, for y> 1/y, we have
B(y)< B(1/y). Thus, α(y)< 0 and consequently, G(y) is decreasing.
Therefore, for y ∈ (1,∞), we have

G(y)< lim
y→1+G(y)= (E(r)

k (1))2 =Γ(r−k+1,1)2,

which gives rise to (2.6).

Corollary 2.3. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then, the limits

lim
y→0+ y

E(r+1)
k (y)

E(r)
k (y)

=−(r−k+1), (2.7)

lim
y→0+

E(r)
k (y)E(r+2)

k (y)

(E(r+1)
k (y))2

= r−k+2
r−k+1

, (2.8)

are valid.

Proof. By using identity (1.15), we have

lim
y→0+ y

E(r+1)
k (y)

E(r)
k (y)

=− lim
y→0+

Γ(r−k+2, y)
Γ(r−k+1, y)

=−Γ(r−k+2)
Γ(r−k+1)

=−(r−k+1).

Similarly,

lim
y→0+

E(r)
k (y)E(r+2)

k (y)

(E(r+1)
k (y))2

= lim
y→0+

Γ(r−k+1, y)Γ(r−k+3, y)
(Γ(r−k+2, y))2

= Γ(r−k+1)Γ(r−k+3)
(Γ(r−k+2))2

= (r−k)!(r−k+2)!
((r−k+1)!)2 = r−k+2

r−k+1
.

Lemma 2.5. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then, the function

T(y)= yE(r+1)
k (y)(

E(r)
k (y)

)2 (2.9)

is decreasing if r is even and increasing if r is odd.

Proof. A direct computation yields

T ′(y)=
(

y
E(r+1)

k (y)

E(r)
k (y)

)′
1

E(r)
k (y)

+
(

y
E(r+1)

k (y)

E(r)
k (y)

)
− E(r+1)

k (y)

(E(r)
k (y))2

= 1

E(r)
k (y)

(
y

E(r+1)
k (y)

E(r)
k (y)

)′
− y

(
E(r+1)

k (y)

E(r)
k (y)

)2 .

In view of Lemma 2.4, the expression in the square brackets is negative. Also, E(r)
k (y)> 0 if r is

even and E(r)
k (y)< 0 if r is odd. Therefore, T ′(y)< 0 if r is even and T ′(y)> 0 if r is odd.
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Theorem 2.4. Let y> 0, r ∈N0 and k ∈N such that r ≥ k. Then

2E(r)
k (y)E(r)

k (1/y)

E(r)
k (y)+E(r)

k (1/y)
≤Γ(r−k+1,1) (2.10)

holds if r is even, and

2E(r)
k (y)E(r)

k (1/y)

E(r)
k (y)+E(r)

k (1/y)
≥−Γ(r−k+1,1) (2.11)

holds if r is odd. In both cases, equality occurs if y= 1.

Proof. The cases for y= 1 are easy to establish. For this reason, we shall prove the results for

only y ∈ (0,1)∪(1,∞). Let H(y)= 2E(r)
k (y)E(r)

k (1/y)

E(r)
k (y)+E(r)

k (1/y)
, for y ∈ (0,1)∪(1,∞), r ∈N0 and k ∈N. Since H(y)

remains the same when y is replaced with 1/y, it suffices to prove the results (2.10) and (2.11)
for y ∈ (1,∞). Now suppose that y ∈ (1,∞). After differentiating and rearranging, we arrive at

y
[

1

E(r)
k (y)

+ 1

E(r)
k (1/y)

]
H′(y)
H(y)

= y
E(r+1)

k (y)

(E(r)
k (y))2

− 1
y

E(r+1)
k (1/y)

(E(r)
k (1/y))2

:= D(y).

At this stage, suppose that r is even. Then, the decreasing property of the function T(y) in
Lemma 2.5 implies that, for y > 1/y, we have T(y)< T(1/y). Thus, D(y)< 0 and consequently,
H(y) is decreasing. Therefore, for y ∈ (1,∞), we have

H(y)< lim
y→1+H(y)= E(r)

k (1)=Γ(r−k+1,1),

which gives (2.10).
Similarly, suppose that r is odd. Then the increasing property of the function T(y) in

Lemma 2.5 implies that, for y > 1/y, we have T(y)> T(1/y). Thus, D(y)> 0 and consequently,
H(y) is increasing. Therefore, for y ∈ (1,∞), we have

H(y)> lim
y→1+H(y)= E(r)

k (1)=−Γ(r−k+1,1),

which gives (2.11).

3. Some Remarks
Remark 3.1. Lemma 2.3 implies that

E(r+1)
k (y)+ yE(r+2)

k (y)> 0 (3.1)

if r is even and

E(r+1)
k (y)+ yE(r+2)

k (y)< 0 (3.2)

if r is odd.

Remark 3.2. The decreasing property of the function B(y) in Lemma 2.4 implies that

y
E(r+1)

k (y)

E(r)
k (y)

<−(r−k+1) (3.3)

for y> 0, r ∈N0 and k ∈N such that r ≥ k.
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Remark 3.3. Lemma 2.5 implies that

E(r)
k (y)E(r+1)

k (y)+ y[E(r)
k (y)E(r+2)

k (y)−2(E(r+1)
k (y))2]

[E(r)
k (y)]3

< (>)0 (3.4)

if r is even (odd), respectively. This also implies that

E(r)
k (y)E(r+1)

k (y)+ y[E(r)
k (y)E(r+2)

k (y)−2(E(r+1)
k (y))2]< 0, (3.5)

for all r ∈N0.

Remark 3.4. If r = 0 in Theorem 2.4, then we obtain (1.19) as a particular case. Also, if r = 0
and k = 1 in Theorem 2.1, Theorem 2.2 and Theorem 2.4, then, we respectively obtain (1.16),
(1.17) and (1.18). Therefore, this paper is a generalisation of the papers [11] and [12].

4. Conclusion
We have established arithmetic, geometric and harmonic mean inequalities for derivatives of
the generalised exponential integral function. The results obtained serve as generalisations of
some known results in the literature. Also, along the way, we established some limit properties
involving certain ratios of the function. The findings further broaden the areas of application of
the function.
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