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1. Introduction
An interface problem is a type of problem in mathematics which involves interface across
different or overlapping regions. Such problems usually arise when solving partial differential
equations in multiple domains with different boundary conditions or when observing the
behavior of solutions in relation to the interface of two domains. In mathematics, these kinds of
problems have many uses. Such problems usually involve the usage of differential equations
which are defined across interfaces containing discontinuous or non smooth data and solutions.

http://doi.org/10.26713/jims.v17i2.3224
https://orcid.org/0009-0005-8280-3388
https://orcid.org/0000-0003-0731-7695


174 Chebyshev Collocation Method for Solving Caputo Fractional Interface Problem: Sh. Mohamed et al.

One specific field of application problems is the conduction of heat through the materials
(Cao et al. [10]). Another examples relate to fluid motion (Layton [24]), image processing
(Li et al. [25]), lots of scholars have examined numerical approaches for interface problems
solution such as Finite Difference Method (FDM) (Han [20]), Chebyshev collocation method
(Sameeh and Elsaid [29]), pseudo-spectral collocation method (Hessari et al. [21]), and high
order difference potentials methods (Epshteyn and Phippen [18]).

There has been increasing importance placed upon Fractional Differential Equations (FDEs)
due to the wide applicability of these types of equations in research and engineering (Boulaaras
et al. [9]). The application of fractional calculus is best expressed in modeling processes that
exhibit characteristics such as memory and spatial dependency, which cannot be conveniently
expressed through the standard integer-order derivatives In particular, the rudimentary steps
taken towards calculus, that of differentiation and integration, are extended to non-integer
orders through the initial efforts of Riemann-Liouville and Caputo on fractional derivatives.
Commonly, these fractional differential equations are used to describe processes like, responding
to the corona virus dynamic (Zhang et al. [33]), sanitary kinetics and theory of wastewater on-
going restoring models (Alqahtani et al. [5]), diffusion processes (Bazhlekov and Bazhlekova [8]),
forecasting of economic growth over long periods (Johansyah et al. [22]), and rubella disease
dynamics modeling (Baleanu et al. [7]). The methodologies that have been invented to solve
these FDEs include the operational method of wavelets (Neamaty et al. [27]), method of lines
(Liu et al. [26]), finite element method (Adel et al. [1]), homotopy (Afrouzi et al. [2]), Sumudu
transform (Darzi et al. [13]), finite difference method (Tadjeran and Meerschaert [31]), and
collocation method (Gebril et al. [19]).

The numerical analysis of fractional differential equation interface problems presents
quite some challenges to analysts because it has a difficult fractional calculus domain. It is
often very difficult to model and simulate the behavior of interface problems because of the
complex nature of memory and spatial effects in fractional differential equations. Moreover,
there is also the problem of lacking sound and adequate methodologies that can be used by the
scholars and practitioners in solving interface problems using fractional calculus. Among the few
numerical methods designed to solve interface problems involves FDE are the Caputo method
(Daneh-Dezfuli et al. [12]) and reproducing kernel method (Al-Masaeed et al. [4]). Therefore,
the Researchers, engineers, and other science workers find it challenging to correctly and
quickly simulate any systems with interfaces and described by fractional differential equations.
Therefore, there is an urgent need to come up with good numerical schemes, which motivated
us in this study to consider the following 1-D fractional interface problem:

Dγυ(ξ)+β1υ(ξ)= g1(ξ), 0< ξ< ζc, 1< γ≤ 2, (1.1)

D2υ(ξ)+β2υ(ξ)= g2(ξ), ζc < ξ< 1 (1.2)

subject to boundary conditions

υ(0)=ψ0, υ(1)=ψ1, (1.3)

with interface conditions on σ:

υ(σ+)=α1υ(σ−)+κ1, (1.4)

υ′(σ+)=α2υ
′(σ−)+κ2, (1.5)

where u is an unidentified function that will be found, andβ1,β2 are suitably smooth functions
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specified in (0,ζc), (ζc,1), respectively. The Caputo fractional derivative has an order (1< γ≤ 2)
can be used for the spatial fractional derivative Dγυ(ξ) which is elaborated by Azizi and
Loghmani [6] given as

Dγυ(ξ)= 1
Γ(2−γ)

∫ ξ

0
(ξ−ς)1−γ∂

2υ(ξ,ς)
∂ς2 dς . (1.6)

The Chebyshev collocation method is utilized in this study to tackle fractional interface
problems. This method is very useful in a broad class of equations such as linear and non-
linear ordinary differential equations (El-Gamel and Sameeh [17], Sezer and Kaynak [30]),
partial differential equations (Yuksel et al. [32]), integro differential equations (Akyüz and
Sezer [3], Çerdik-Yaslan et al. [11]), partial integro differential equation (Sameeh and Elsaid
[28]), Troeschs problem (El-Gamel and Sameeh [15]), eigen value problems (El-Gamel and
Sameeh [14,16]). In this paper, six aspects are made to cover. Section 2 lists the main features of
Chebyshev basis. The detailed methodology is more clearly specified in Section 3. In Section 4,
an a priori errors is derived. Numerical simulation results are in Section 5. Finally, in Section 6
the results of the present study are given.

2. Fundamental Relations
The Chebyshev polynomials with degree n, after being shifted, can be represented in relation to
ξ within the interval [a,b] as outlined below:

θ∗n(ξ)= cos
(
narccos

(
2ξ− (a+b)

b−a

))
. (2.1)

The function θ∗n(ξ) attained its highest value (n+1) times for distinct signs over the range [a,b]:

∥θn∥∞ = 1, θn(ξi)= (−1)i,

where the maximum norm ∥θn∥∞ is defined as the supremum of |θn(ξ)|, and Chebyshev
collocation points denoted by ξi , are determined by:

ξi = b−a
2

[(
a+b
b−a

)
+cos

(
iπ
n

)]
, i = 0,1,2, . . . ,n. (2.2)

Utilizing the first kind relocated Chebyshev polynomial θ∗n(ξ) over [a,b], the approximation of
υ(ξ) is achieved through a truncated series of relocated Chebyshev polynomials, expressed as:

υn(ξ)=
N∑

l=0
k∗

l θ
∗
l (ξ), a ≤ ξ≤ b. (2.3)

The derivatives with integer order λ= 0,1,2,3, . . ., indicated by υ(λ), are expressed similarly as
follows:

υ(λ)
n (ξ)=

N∑
l=0

k∗(λ)
l θ∗l (ξ), a ≤ ξ≤ b. (2.4)

The matrix representation of the function υ(ξ) and its derivatives is provided by

υn(ξ)= θ∗(ξ)A∗, (2.5)

υ(λ)
n (ξ)= θ∗(ξ)A∗(λ), (2.6)

where

θ∗(ξ)= [θ∗0 (ξ) θ∗1 (ξ) θ∗2 (ξ) · · · θ∗n(ξ)],
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A∗ =
[

1
2

a∗
0 a∗

1 · · · a∗
n

]τ
.

Lemma 2.1 ([19]). The computation of vector A∗(λ) from vector A∗ is achieved through
the formula:

A∗(λ) =
(

4
b−a

)λ
ρλA∗, (2.7)

where

ρ =


0 1

2 0 3
2 0 5

2 . . . r1
0 0 2 0 4 0 . . . r2
0 0 0 3 0 5 . . . r3
...

...
...

...
...

... . . . ...
0 0 0 0 0 0 . . . n
0 0 0 0 0 0 . . . 0

 ,

where

r1 =
{

n
2 , r2 = 0, r3 = n, if n is an odd number,
0, r2 =σ, r3 = 0, if n is an even number.

Then, you might explain υλn(ξ) as follows:

υ(λ)
n (ξ)=

(
4

b−a

)λ
ρλθ∗(ξ)A∗. (2.8)

Lemma 2.2 ([23]). If the function υ(ξ) is approximated in the form (2.3), then Dγ(υn(ξ)) can be
expressed as

Dγ(υn(ξ))=ϕ(ξ)A∗, (2.9)

where

ϕ(ξ)= [ϕ1(ξ) ϕ2(ξ) ϕ3(ξ) · · · ϕN+1(ξ)], (2.10)

Consequently, for ξ ∈ (0,h), the following is a demonstration of ϕ’s vector elements:

ϕκ =


0, κ= 1,2,
κ−[γ]−1∑

l=0
(−1)l 22(κ−l−1)

h(κ−l−1)
(κ−1)(2κ−l−3)!(κ−l−1)!
l!(2κ−2l−2)!Γ(κ−l−γ) ξ

κ−l−α−1, 3≤ κ≤ N +1.

3. Description of Method
In this section, we delve into the one-dimensional fractional interface problem described by
equations (1.1)-(1.2) and its associated boundary and interface conditions (1.3)-(1.4) using
the Chebyshev collocation method. We express the Chebyshev approximation of equations (1.1)-
(1.2) through the following composite forms:

υ(ξ)=
N∑

l=0
b−

l θ
−
l (ξ), 0≤ ξ≤ ζc, (3.1)

υ(ξ)=
M∑

k=0
c+kθ

+
k (ξ), ζc ≤ ξ≤ 1, (3.2)
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where θ−l , and θ+k represent shifted Chebyshev polynomials on the intervals (0,ζc) and (ζc,0)
respectively, defined as:

θ−k (ξ)= cos
(
karccos

(
2ξ−ζc

ζc

))
, (3.3)

θ+l (ξ)= cos
(
l arccos

(
2ξ− (1+ζc)

1−ζc

))
. (3.4)

The discrete Chebyshev system corresponding to equations (1.1) and (1.2) is delineated by
the following equations:

ϕ(ξ−ν )B−+β1θ
−(ξ−ν )B− = g1(ξ−ν ), 0< ξ−ν < ζc, (3.5)

4
(1−ζc)

θ+(ξ+µ )ρ2C++β2θ
+(ξ+µ )C+ = g2(ξ+µ ), ζc < ξ+µ < 1, (3.6)

in which ξ−ν and ξ+µ are the Chebyshev collocation nodes on the intervals (0,ζc) and (ζc,0),
respectively. The matrix form of the discrete Chebyshev system in both intervals is as follows:

ω1B− =G1, 0< ξ−ν < ζc, (3.7)

ω2C+ =G2, ζc < ξ+µ < 1, (3.8)

where

ω1 =Φ+β1Θ
−, ω2 = 4

(1−ζc)
Θ+ρ2 +β2Θ

+,

with

G1 =


g1(ξ−0 )
g1(ξ−1 )

...
g1(ξ−N)

 , Θ− =


θ−0 (ξ−0 ) θ−1 (ξ−0 ) . . . θ−N(ξ−0 )
θ−0 (ξ−1 ) θ−1 (ξ−1 ) . . . θ−N(ξ−1 )

...
... . . . ...

θ−0 (ξ−N) θ−1 (ξ−N) . . . θ−N(ξ−N)

 ,

and

G2 =


g2(ξ+0 )
g2(ξ+1 )

...
g2(ξ+M)

, Θ+ =


θ+0 (ξ+0 ) θ+1 (ξ+0 ) . . . θ+M(ξ+0 )
θ+0 (ξ+1 ) θ+1 (ξ+1 ) . . . θ+M(ξ+1 )

...
... . . . ...

θ+0 (ξ+M) θ+1 (ξ+M) . . . θ+M(ξ+M)

, Φ=


ϕ0(ξ−0 ) ϕ1(ξ−0 ) . . . ϕN(ξ−0 )
ϕ0(ξ−1 ) ϕ1(ξ−1 ) . . . ϕN(ξ−1 )

...
... . . . ...

ϕ0(ξ−N) ϕ1(ξ−N) . . . ϕN(ξ−N)

.

Both intervals (0,ζc) and (ζc,1) have their discrete Chebyshev systems integrated with interface
and boundary conditions to produce a composite matrix. This matrix is recognized as the matrix
form of the discrete Chebyshev system throughout the entire domain (0,1). The conditions at
both the boundary and the interface are unified in the following manner:

ϑ−
1 B− =ψ0, (3.9)

ϑ+
2 C+ =ψ1, (3.10)

ϑ3A = κ1, (3.11)

ϑ4A = κ2, (3.12)

where

ϑ3 = [ϑ−
3 ϑ+

3 ], ϑ4 = [ϑ−
4 ϑ+

4 ], A =
[
B−

C+
]

,

ϑ−
1 = θ−(0), ϑ+

2 = θ+(1),
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ϑ−
3 =−α1θ

−(ζc), ϑ+
3 = θ+(ζc),

ϑ−
4 =− 4

ζc
α2θ

−(ζc)ρ, ϑ+
4 = 4

1ζc
θ+(ζc)ρ.

Throughout the whole domain (0,1), the discrete Chebyshev system is as follows

T A =G, (3.13)

where

T =



ω1 0
0 ω2
ϑ−

1 0
0 ϑ+

2
ϑ−

3 ϑ+
3

ϑ−
4 ϑ+

4

 , G =


G1
G2
0
κ1
κ2

 .

4. Error Estimation
Two procedures are involved in estimating the error for the interface problem (1.1)-(1.5).
Estimating the error in the subinterval (0,ζc) is the first stage, and estimating the error
in the subinterval (ζc,1) is the second. In order to establish the error resulting from employing
Chebyshev polynomials to approximate the solution of equation (1.1) in (0,ζc). It was assumed
that the exact solution of this equation can be stated in the following form:

υ(ξ)= LΥ
−

N υ(ξ)+RΥ−
N (ξ). (4.1)

The interpolating error RΥ−
N (ξ), delineated in [2], corresponds to the Nth order Lagrange

approximating polynomial LΥ
−

N υ(ξ) that interpolates υ(ξ) on the Chebyshev collocation node
mesh Υ− within subinterval (0,ζc).

RΥ−
N (ξ)= LΥ

−
N υ(ξ)−υ(ξ)= υ(N+1)(η)

(N +1)!
ψΥ

−
N+1(ξ), (4.2)

η falls within the range (0,ζc), while the polynomials ψΥ
−

N+1(ξ) are precisely described as

ψΥ
−

N+1(X )=
N∏

r=0
(ξ−ξr).

By expanding υ(ξ) as Lagrange interpolating polynomials, as described in equation (4.1), LΥ
−

N υ(ξ)
is considered to be a solution to the next equation:

Dγ(LΥ
−

N υ(ξ))+β1(LΥ
−

N υ(ξ))= g1(ξ)+∆g1(ξ), (4.3)

where

∆g1(ξ)=−Dγ(RΥ−
N (ξ))−β1(RΥ−

N (ξ)). (4.4)

The representation of LΥ
−

N υ(ξ) through Chebyshev series as LΥ
−

N υ(ξ) = θ−B−′ results in
the discrete Chebyshev system of equation (4.3).

ω−
1 B−′ =G1 +∆G1. (4.5)

The difference between (3.7) and (4.5) yields

B−′−B− = (ω1)−1∆G1 (4.6)
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Theorem 4.1. If υ and υn stand for the accurate and Chebyshev approximated solutions of (1.1),
respectively, and assuming υ exhibits sufficient smoothness, then

|υ−υn| ≤ |RΥ−
n

N |+∥θ−(ξ)∥∥ (ω1)−1 ∥∥∆G1∥. (4.7)

Proof. For assessing the upper limit of error, we are equipped

|υ−υn| ≤ |υ−LΥ
−

N υ(ξ)|+ |LΥ−
N υ(ξ)−υn| ≤ |RΥ−

n
N |+ |θ−(ξ)B−′−θ−(ξ)B−|

≤ |RΥ−
n

N |+∥θ−(ξ)∥|B−′−B−| ≤ |RΥ−
n

N |+∥θ−(ξ)∥∥ (ω1)−1 ∥∥∆G1∥.

Similarly, the error is evaluated within the subinterval (ζc,1).

Theorem 4.2. If υ and υm stand for the accurate and Chebyshev approximated solutions of (1.2),
respectively, and assuming υ exhibits sufficient smoothness, then

|υ−υm| ≤ |RΥ+
m

N |+∥θ+(ξ)∥∥ (ω2)−1 ∥∥∆G2∥. (4.8)

The mesh Υ+
m consists of Chebyshev collocation nodes within the subinterval (ζc,1).

5. Numerical Examples
In this portion of the article, we provide three numerical examples to demonstrate
the effectiveness of the Chebyshev collocation method in handling fractional order 1-D interface
problems. The results achieved via this approach, are compared to the results obtained via other
methods so we can emphasize the benefits and efficiency of Chebyshev collocation in solving
such complex problems.

Example 5.1. Take into consideration the following problem:

κDγυ(ξ)= 12ξ2, κ=
1, ξ ∈ (0,0.5), γ ∈ (1,2],

2, ξ ∈ (0.5,1), γ= 2

subject to boundary conditions

υ(0)= 0, υ(1)= 17
32

,

with interface conditions

υ(0.5−)= υ(0.5+), υ′(0.5−)= υ′(0.5+)+ 1
2

.

As γ= 2, the exact solution is

υ(ξ)=
ξ

4, ξ ∈ (0,0.5),

1
2

(
ξ4 + 1

16

)
, ξ ∈ (0.5,1).

Table 1 shows the absolute error computed by both the Chebyshev collocation technique and
the modified reproducing kernel (Al-Masaeed et al. [4]) for Example 5.1 in different locations.

Figure 1 depict Chebyshev fitted graphs of the solution for Example 5.1 indicating different
values of γ.
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Table 1. Absolute error for Example 5.1 at γ= 2

ξ Chebyshev collocation method Reproducing kernel [4]
N +M = 10 N +M = 50

0.1 2.70643e-17 5.33167e-7
0.2 2.90566e-17 1.85062e-6
0.3 2.77556e-17 3.94932e-6
0.4 3.12250e-17 6.82927e-6
0.5 2.77556e-17 1.04000e-5
0.6 6.93889e-17 7.61874e-6
0.7 2.77556e-17 5.12922e-6
0.8 2.77556e-17 3.02654e-6
0.9 5.55112e-17 1.31528e-6
1 0 0

Figure 1. Chebyshev fitted graphs of the solution for Example 5.1 indicating different values of γ

Example 5.2. Take into consideration the following problem:

Dγυ(ξ)=
{

eξ, γ ∈ (1,2], ξ ∈ (0,0.5),
2sec2(ξ−0.5)tan(ξ−0.5), γ= 2, ξ ∈ (0.5,1),

subject to boundary conditions

υ(0)= 1, υ(1)= e0.5 + tan(0.5),

with interface condition

υ(0.5−)= υ(0.5+), υ′(0.5−)= e0.5υ′(0.5+).

As γ= 2, the exact solution is

υ(ξ)=
{

eξ, ξ ∈ (0,0.5),
e0.5 + tan(ξ−0.5), ξ ∈ (0.5,1).
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Table 2 determines the absolute error computed using both Chebyshev collocation method as
well as the modified reproducing kernel [4] which was generated from Example 5.2 in various
positions. Figure 2 show Chebyshev fitted curves for the solutions of Example 5.2 at various
values of γ.

Table 2. Absolute error for Example 5.2 at γ= 2

ξ Chebyshev collocation method Reproducing kernel [4]

N +M = 10 N +M = 50

0.1 4.25644e-11 1.38358e-8

0.2 8.51285e-11 5.07672e-8

0.3 1.276925e-10 1.13166e-7

0.4 1.702567e-10 2.03710e-7

0.5 2.128213e-10 3.25359e-7

0.6 1.70125e-10 9.03652e-7

0.7 1.45797e-10 1.10708e-7

0.8 6.71069e-11 2.35579e-7

0.9 4.21019e-11 2.27158e-7

1 0 0

Figure 2. Chebyshev fitted graphs of the solution for Example 5.2 indicating different values of γ

Example 5.3. Take into consideration the following problem:

κDγυ(ξ)= 56ξ6, κ=
{

1, γ ∈ (1,2], ξ ∈ (0,0.5),
2, γ= 2, ξ ∈ (0.5,1),

subject to boundary conditions

υ(0)=−1, υ(1)= 257
512

,
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with interface conditions

υ(0.5−)= υ(0.5+)−2, υ′(0.5−)= 2υ′(0.5+).

As γ= 2, the exact solution is

υ(ξ)=
{
ξ8 −1, ξ ∈ (0,0.5),
1
2

(
ξ8 + 1

256

)
, ξ ∈ (0.5,1).

Table 3 presents a comparison of the absolute error, as calculated by the Chebyshev collocation
technique and by modified reproducing kernel [4] for Example 5.3 at the various points. Figure 3
depict various Chebyshev fitted graphs of the solution for Example 5.3 distinguishing numerous
values of γ.

Table 3. Absolute error for Example 5.3 at γ= 2

ξ Chebyshev collocation method Reproducing kernel [4]

N +M = 10 N +M = 50

0.1 3.33067e-16 1.29807e-10

0.2 1.11022e-16 8.28191e-9

0.3 1.11022e-16 9.42817e-8

0.4 2.22045e-20 5.29630e-7

0.5 2.22045e-16 2.02019e-6

0.6 2.22045e-16 9.30563e-6

0.7 2.22045e-16 1.80000e-5

0.8 2.77556e-20 2.18000e-5

0.9 2.22045e-16 1.75000e-5

1 0 0

Figure 3. Chebyshev fitted graphs of the solution for Example 5.3 indicating different values of γ
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6. Conclusion
This paper has employed a computational method to solve the fractional order 1-D interface
problems in the Caputo sense. The main essence of the methodology involves approximating
the solution via Chebyshev polynomials. An estimate of the a priori error was obtained. One of
the advantages of this method is that it has a fast convergence to a solution. The results from
different examples show that the method is valid and consistent. Moreover, the simulation
results are found to be closer to the exact solution of the proposed case. The achievements of the
proposed approach are consistent and better than that realized through the reproducing kernel
method as the Chebyshev approach attains results with moderate repetitions.
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