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1. Introduction and Definitions
The meromorphic functions mentioned throughout the paper will mean meromorphic in
the whole complex plane. For any non-constant meromorphic function f , S(r, f ) means

S(r, f )= o(T(r, f )),
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possibly outside of a set of finite linear measure. Let f and g be two non constant meromorphic
functions defined in the open complex plane C and let a ∈ C∪ {∞}. If f − a and g− a have
the same zeros CM (Counting Multiplicities) and IM (Ignoring Multiplicities) then we say that
f and g share the value ‘a’ CM and IM respectively. Similarly, f , g share ‘∞’ CM or IM means
that 1

f , 1
g share ‘0’ CM or IM respectively. For the standard definitions and notations on value

distribution theory we refer Hayman [1].

In 2018, Tao and Wang [3] proved the following theorem.

Theorem 1.1 ([3]). Suppose f is a non-constant meromorphic function, k is a positive integer, n
is a positive integer and satisfies 2n ≥ 3k+13+

p
9k2 +62k+129, if f n( f −1) and f n−1( f −1) f (k)

share 1 IM, and the zeros of f −1 with multiplicity 2 at least, then f = f (k).

Here we mainly extend Theorem 1.1 of Tao and Wang [3]. We consider two differential
polynomials f p gq( f −1)(g−1) and f p−1 gq−1( f −1)(g−1) f (k) g(l) formed with two transcendental
meromorphic functions f and g such that they share 1 IM and then study the uniqueness of
them.

Let f (z) and g(z) be two meromorphic functions and ai , 1 ≤ i ≤ (p+1)(q+1) are small
functions of either f or g. Set

Pp,q( f , g)=
p+1∑
i=1

q+1∑
j=1

a(i−1)(q+1)+ j f p−i+1 gq− j+1

= a1 f p gq +a2 f p gq−1 +·· ·+aq+1 f p +aq+2 f p−1 gq +aq+3 f p−1 gq−1 +·· ·
+a2(q+1) f p−1 +·· ·+ap(q+1)+1 gq +ap(q+1)+2 gq−1 +·· ·+a(p+1)(q+1) . (1.1)

2. Lemmas
In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1. Let f and g be two transcendental meromorphic functions with N(r, f )= S(r, f ),
N(r, g)= S(r, g). If a1 ̸= 0 in (1.1), then

T(r,Pp,q( f , g))≥ pT(r, f )+ qT(r, g)+S(r, f )+S(r, g).

Proof. Let bi = ai+1
a1

, 1 ≤ i ≤ (p+1)(q+1)−1. Then bi ’s are meromorphic functions satisfying
T(r,bi)= S(r, f ) as r →∞.
Further

Pp,q( f , g)= a1 f p gq
[(

1+ b1

g
+·· ·+ bq

gq

)
+

(bq+1

f
+ bq+2

f g
+·· ·+ b2q+1

f gq

)
+·· ·

+
(bp(q+1)

f p + bp(q+1)+1

f p g
+·· ·+ b(p+1)(q+1)−1

f p gq

)]
.

For sufficiently large r, set

A(z)= max
1≤i≤(p+1)(q+1)−1

{
max
|z|=r

|bi|
1
i

}
.

Let E1 = {θ : 0 ≤ θ ≤ 2π, | f s(reiθ)gt(reiθ)| ≥ [2A(reiθ)]s(q+1)+t; 0 ≤ s ≤ p and 0 ≤ t ≤ q}, E2 =
[0,2π]\ E1.
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On E1, we have

|Pp,q( f , g)| ≥ |a1|| f |p|g|q
[(

1− |b1|
|g| − · · ·− |bq|

|g|q
)
−

( |bq+1|
| f | + |bq+2|

| f ||g| + · · ·+ |b2q+1|
| f ||g|q

)
−·· ·

−
( |bp(q+1)|

| f |p + |bp(q+1)+1|
| f |p|g| + · · ·+ |b(p+1)(q+1)−1|

| f |p|g|q
)]

≥ |a1|| f |p|g|q
[(

1− A(z)
2A(z)

−·· ·− [A(z)]q

[2A(z)]q

)
−

(
[A(z)]q+1

[2A(z)]q+1 +·· ·+ [A(z)]2q+1

[2A(z)]2q+1

)
−·· ·

−
(

[A(z)]p(q+1)

[2A(z)]p(q+1) +
[A(z)]p(q+1)+1

[2A(z)]p(q+1)+1 +·· ·+ [A(z)](p+1)(q+1)−1

[2A(z)](p+1)(q+1)−1

)]
= |a1|| f |p|g|q

[(
1− 1

2
−·· ·− 1

2q

)
−

(
1

2q+1 +·· ·+ 1
22q+1

)
−·· ·

−
(

1
2p(q+1) +·· ·+ 1

2(p+1)(q+1)−1

)]
= |a1|| f |p|g|q

2(p+1)(q+1)−1 .

Now

pm(r, f )+ qm(r, g)= m(r, f p gq)

= 1
2π

∫
E1

log+ | f p(z)gq(z)|dθ+ 1
2π

∫
E2

log+ | f p(z)gq(z)|dθ

≤ 1
2π

∫ 2π

0
log+

[
2(p+1)(q+1)−1

|a1|
|Pp,q( f , g)|

]
dθ

+ 1
2π

∫ 2π

0
log+[2A(z)]p(q+1)+qdθ

= m(r,Pp,q( f , g))+S(r, f )+S(r, g) (since ai are small

functions of either f or g). (2.1)

Again since N(r, f )= S(r, f ), N(r, g)= S(r, g) and ai are small functions of either f or g, thus

N(r,Pp,q( f , g))= S(r, f )+S(r, g). (2.2)

Therefore, from (2.1) and (2.2), we have

T(r,Pp,q( f , g))= m(r,Pp,q( f , g))+N(r,Pp,q( f , g))

≥ pm(r, f )+ qm(r, g)+S(r, f )+S(r, g)

= pT(r, f )+ qT(r, g)+S(r, f )+S(r, g).

Lemma 2.2 ([2]). Let f be a non-constant meromorphic function with zero point of f −1 is at
least 2, then

N̄
(
r,

1
f −1

)
≤ N̄

(
r,

f
f ′

)
≤ N̄(r, f )+ N̄

(
r,

1
f

)
+S(r, f ).

Lemma 2.3 ([3]). Suppose F and G are non-constant meromorphic functions and satisfy
N̄(r,F)+ N̄(r, 1

F ) = S(r,F), N̄(r,G)+ N̄(r, 1
G ) = S(r,G). If F and G share a non-zero constant

a IM, then F =G or FG = 1.
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3. Main Theorems
Theorem 3.1. Let f and g be two transcendental meromorphic functions with N(r, f )= S(r, f ),
N(r, g)= S(r, g). Let F = f p gq( f −1)(g−1) and G = f p−1 gq−1( f −1)(g−1) f (k) g(l), where k, l, p
and q (at least one of p or q ≥ 2) are four non-negative integers. If F and G share 1 IM, then
S(r,F)= S(r,G)= S(r, f )+S(r, g).

Proof. According to Lemma 2.1, we obtain

T(r,F)≥ (p+1)T(r, f )+ (q+1)T(r, g)+S(r, f )+S(r, g). (3.1)

Also,

T(r,F)≤ T(r, f p)+T(r, gq)+T(r, f −1)+T(r, g−1)

≤ (p+1)T(r, f )+ (q+1)T(r, g)+O(1). (3.2)

From (3.1) and (3.2), we have

S(r, f )+S(r, g)=O(1). (3.3)

Hence

T(r,F)= (p+1)T(r, f )+ (q+1)T(r, g)+O(1). (3.4)

From (3.3) and (3.4), we obtain
S(r, f )+S(r, g)

T(r,F)
= O(1)

(p+1)T(r, f )+ (q+1)T(r, g)+O(1)
i.e.,

S(r, f )+S(r, g)=o(T(r,F))= S(r,F). (3.5)

Further using second basic theorem, since F and G share 1 IM, we obtain

T(r,F)≤ N̄
(
r,

1
F −1

)
+ N̄

(
r,

1
F

)
+ N̄(r,F)+S(r,F)

≤ N̄
(
r,

1
G−1

)
+ N̄

(
r,

1
f

)
+ N̄

(
r,

1
f −1

)
+ N̄

(
r,

1
g

)
+ N̄

(
r,

1
g−1

)
+ N̄(r, f )+ N̄(r, f −1)+ N̄(r, g)+ N̄(r, g−1)+S(r, f )+S(r, g)

≤ T(r,G)+2T(r, f )+2T(r, g)+S(r, f )+S(r, g).

Thus, using (3.3) and (3.4), we have from above

T(r,G)≥ (p−1)T(r, f )+ (q−1)T(r, g)+O(1). (3.6)

Also, from (3.3) and (3.6), we obtain
S(r, f )+S(r, g)

T(r,G)
≤ O(1)

(p−1)T(r, f )+ (q−1)T(r, g)+O(1)
and since at least one of p, q ≥ 2, thus

S(r, f )+S(r, g)= o(T(r,G))= S(r,G). (3.7)

Hence (3.5), (3.7) give the required result.

Theorem 3.2. Let f and g be two transcendental meromorphic functions with N(r, f )= S(r, f ),
N(r, g)= S(r, g). Let F = f p gq( f −1)(g−1) and G = f p−1 gq−1( f −1)(g−1) f (k) g(l), where k, l, p
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and q (at least one of p or q ≥ 2), p > 3k+1, q > 3l+1 are four non-negative integers. If F and
G share 1 IM and the zeros of f −1 and g−1 are with multiplicity 2 at least, then f g = f (k) g(l).

Proof. Let H =
(

F ′′
F ′ − 2F ′

F−1

)
−

(
G′′
G′ − 2G′

G−1

)
.

Case 1. H ̸= 0. Then F ̸=G. Set U = F ′
F−1 − G′

G−1 .

Subcase 1.1. U = 0.
Then

F = CG+1−C, C ̸= 0 is a constant. (3.8)

If C = 1, then F =G, a contradiction. Therefore, C ̸= 1.
Thus, from (3.8) we have

1
G

= C
F − (1−C)

i.e.,

N̄
(
r,

1
G

)
= N̄

(
r,

1
F − (1−C)

)
. (3.9)

Now if N̄
(
r, 1

f

)
̸= S(r, f ), ∃ z0 ∈C such that f (z0)= 0.

Putting z = z0 in (3.8), we get C = 1, a contradiction.
Thus,

N̄
(
r,

1
f

)
= S(r, f ).

Similarly, we get

N̄
(
r,

1
g

)
= S(r, g), N̄

(
r,

1
f −1

)
= S(r, f ), N̄

(
r,

1
g−1

)
= S(r, g).

Hence

N̄
(
r,

1
G

)
≤ N̄

(
r,

1
f p−1

)
+ N̄

(
r,

1
gq−1

)
+ N̄

(
r,

1
f −1

)
+ N̄

(
r,

1
g−1

)
+ N̄

(
r,

f
f (k)

)
+ N̄

(
r,

g
g(l)

)
+O(1)

≤ N̄
(
r,

1
f

)
+ N̄

(
r,

1
g

)
+S(r, f )+S(r, g)+T

(
r,

f (k)

f

)
+T

(
r,

g(l)

g

)
+O(1)

≤ S(r, f )+S(r, g)+T
(
r,

f (k)

f

)
+T

(
r,

g(l)

g

)
+O(1)

= m
(
r,

f (k)

f

)
+N

(
r,

f (k)

f

)
+m

(
r,

g(l)

g

)
+N

(
r,

g(l)

g

)
+O(1) (using (3.3))

≤ kN̄(r, f )+kN̄
(
r,

1
f

)
+ lN̄(r, g)+ lN̄

(
r,

1
g

)
+O(1)

(since m
(
r, f (k)

f

)
= S(r, f ) and m

(
r, g(l)

g

)
= S(r, g)).

Thus, using (3.9),

N̄
(
r,

1
F − (1−C)

)
=O(1).
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Now using Lemma 2.1 and (3.3), we get

(p+1)T(r, f )+ (q+1)T(r, g)+O(1)≤ T(r,F)

≤ N̄
(
r,

1
F

)
+ N̄

(
r,

1
F − (1−C)

)
+ N̄(r,F)+O(1),

(by second basic theorem)

=O(1), a contradiction.

Subcase 1.2. U ̸= 0.
Firstly, suppose that f and g have no common zero.
Let z0 is a zero of f with the multiplicity r and z1 is a zero of g with the multiplicity s (r, s ̸= 0).
Then, z0 is a zero of F ′

F−1 with the multiplicity pr − 1, a zero of G′
G−1 with the multiplicity

(p−1)r+ r−k−1= pr−k−1 and z1 is a zero of F ′
F−1 with the multiplicity qs−1, a zero of G′

G−1
with the multiplicity (q−1)s+ s− l −1 = qs− l −1. Thus, U has zero at z0 with multiplicity
p−k−1 and has zero at z1 with multiplicity q− l−1. Noting that m(r,U)=O(1), we have

(p−k−1)N̄
(
r,

1
f

)
+ (q− l−1)N̄

(
r,

1
g

)
≤ N̄

(
r,

1
U

)
+O(1)

≤ T(r,U)+O(1)

≤ N(r,U)+O(1)

≤ N
(
r,

(F −1)′

F −1

)
+N

(
r,

(G−1)′

G−1

)
+O(1)

= N̄(r,F −1)+ N̄
(
r,

1
F −1

)
+ N̄(r,G−1)

+ N̄
(
r,

1
G−1

)
+O(1). (3.10)

Now where 1
F−1 and 1

G−1 have poles, there 1
G
F

−1

also has poles. Thus,

N̄
(
r,

1
F −1

)
≤ N̄

(
r,

1
G
F −1

)
and N̄

(
r,

1
G−1

)
≤ N̄

(
r,

1
G
F −1

)
. (3.11)

Thus, from (3.10) and (3.11) and since N̄(r,F)=O(1)= N̄(r,G), we get

(p−k−1)N̄
(
r,

1
f

)
+ (q− l−1)N̄

(
r,

1
g

)
≤ 2N̄

(
r,

1
G
F −1

)
+O(1)

≤ 2T
(
r,

f (k) g(l)

f g

)
+O(1)

= 2m
(
r,

f (k) g(l)

f g

)
+2N

(
r,

f (k) g(l)

f g

)
+O(1)

≤ 2
[
kN̄(r, f )+kN̄

(
r,

1
f

)
+ lN̄(r, g)+ lN̄

(
r,

1
g

)]
+O(1)

(since m
(
r, f (k) g(l)

f g

)
=O(1))
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= 2kN̄
(
r,

1
f

)
+2lN̄

(
r,

1
g

)
+O(1)

(since N(r, f )= S(r, f ), N(r, g)= S(r, g)).

Hence

(p−3k−1)N̄
(
r,

1
f

)
+ (q−3l−1)N̄

(
r,

1
g

)
=O(1)

=⇒ N̄
(
r,

1
g

)
= S(r, g) and N̄

(
r,

1
f

)
= S(r, f ), (3.12)

because p > 3k+1, q > 3l+1.
Secondly, suppose that f and g has atleast one common zero.

Let z0 is a zero of f with the multiplicity r and a zero of g with the multiplicity s (r, s ̸= 0).
Then z0 is a zero of F ′

F−1 with the multiplicity pr+ qs−1, a zero of G′
G−1 with the multiplicity

(p−1)r+(q−1)s+r−k+s− l−1= pr−k+qs− l−1. So z0 is a zero of U with multiplicity atleast
p−k+ q− l−1. Noting that m(r,U)=O(1), we have

(p−k+ q−3l−1)N̄
(
r,

1
f

)
+2lN̄

(
r,

1
g

)
≤ 2kN̄

(
r,

1
f

)
+2lN̄

(
r,

1
g

)
+O(1)

=⇒ (p+ q−3k−3l−1)N̄
(
r,

1
f

)
=O(1)

=⇒ N̄
(
r,

1
f

)
=O(1) (3.13)

because p > 3k+1, q > 3l+1.
We can also write

2kN̄
(
r,

1
f

)
+ (p−3k+ q− l−1)N̄

(
r,

1
g

)
≤ 2kN̄

(
r,

1
f

)
+2lN̄

(
r,

1
g

)
+O(1)

=⇒ (p+ q−3k−3l−1)N̄
(
r,

1
g

)
=O(1)

=⇒ N̄
(
r,

1
g

)
=O(1) (3.14)

because p > 3k+1, q > 3l+1.
In all cases, from second basic theorem, we get

T(r,F)≤ N̄
(
r,

1
F

)
+ N̄

(
r,

1
F −1

)
+ N̄(r,F)+S(r,F)

≤ N̄
(
r,

1
f

)
+ N̄

(
r,

1
g

)
+ N̄

(
r,

1
f −1

)
+ N̄

(
r,

1
g−1

)
+ N̄

(
r,

1
G
F −1

)
+O(1)

(using (3.11) and since N̄(r,F)=O(1))

≤ (k+2)N̄
(
r,

1
f

)
+ (l+2)N̄

(
r,

1
g

)
+O(1) (by Lemma 2.2 and since

N(r, f )= S(r, f ), N(r, g)= S(r, g))

=O(1) (using (3.13), (3.14)),

a contradiction.
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Case 2. H = 0.
Then

1
F −1

= A
G−1

+B. (3.15)

Subcase 2.1. Suppose N̄(r, 1
f )= S(r, f ) and N̄(r, 1

g )= S(r, g). Then, N̄(r,F)+N̄(r, 1
F )= S(r,F) and

N̄(r,G)+ N̄(r, 1
G )= S(r,G). Thus, by Lemma 2.3, we get F =G or FG = 1.

First suppose that F =G. Then f g = f (k) g(l), conclusion established.
Next suppose that FG = 1. Then, we get

f 2p g2q( f −1)2(g−1)2 = f g
f (k) g(l) .

So,

T(r, f 2p g2q( f −1)2(g−1)2)+O(1)≤ T
(
r,

f (k)

f

)
+T

(
r,

g(l)

g

)
=⇒ (2p+2)T(r, f )+ (2q+2)T(r, g)≤ kT(r, f )+ lT(r, g)+O(1) (using Lemma 2.1)

=⇒ (2p+2−k)T(r, f )+ (2q+2− l)T(r, g)≤O(1),

a contradiction since p > 3k+1, q > 3l+1.

Subcase 2.2. Suppose N̄(r, 1
f ) ̸= S(r, f ) or N̄(r, 1

g ) ̸= S(r, g). Without loss of generality let
N̄(r, 1

f ) ̸= S(r, f ). Then, ∃ z0 ∈C such that f (z0)= 0.
Putting z = z0 in (3.15), we get B = A−1.

First suppose that A = 1. Then B = 0 and thus F = G, i.e., f g = f (k) g(l), conclusion
established.

Next suppose that A ̸= 1. Then, we get
G
F

= 1
A−1

1

F − A
A−1

. (3.16)

Now from Lemma 2.1, we have

(p+1)T(r, f )+ (q+1)T(r, g)

≤ T(r,F)+O(1)

≤ N̄
(
r,

1
F

)
+ N̄

(
r,

1

F − A
A−1

)
+ N̄(r,F)+O(1) (by second basic theorem)

≤ N̄
(
r,

1
f

)
+ N̄

(
r,

1
f −1

)
+ N̄

(
r,

1
g

)
+ N̄

(
r,

1
g−1

)
+ N̄

(
r,

G
F

)
+O(1) (using (3.16))

≤ 2T(r, f )+2T(r, g)+kN̄
(
r,

1
f

)
+ lN̄

(
r,

1
g

)
+O(1) (using Lemma 2.2)

≤ (2+k)T(r, f )+ (2+ l)T(r, g)+O(1).

Therefore,

(p−1−k)T(r, f )+ (q−1− l)T(r, g)=O(1),

a contradiction.
Hence the theorem.
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Example 3.1. Let f = ez , g = e−z , k = 1, l = 0, p = 4, q = 3. Here f and g are two transcendental
meromorphic functions with N(r, f )= S(r, f ) and N(r, g)= S(r, g). Also, k, l, p, q satisfy all the
conditions of Theorem 3.2.
Now F =−(ez −1)2 and G =−(ez −1)2. Thus, F and G share 1 IM.
Hence our chosen functions and integers satisfies all the conditions of Theorem 3.2 except
the zeros of f −1 and g−1 are with multiplicity 2 at least.
But f g = 1= f (k) g(l). Hence, the conclusion established.
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