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Abstract. Chemical graph theory plays an essential role in mathematical chemistry by representing
chemical compounds as molecular graphs and utilizing graph-theoretical methods to analyze them.
Topological indices (TIs) are numerical parameters that describe the structure of a molecular graph.
In this work, we introduced newly defined seven closed neighborhood topological indices and compute
the same for some standard classes of graphs. Later we examine these indices with some physical
properties of octane isomers. Our indices exhibits highly correlation with acentric factor of octane
isomers. Additionally we derive the expression for seven TI’s of TUC4C8(R)[p, q] nanostructures
as well as subdivision graph and the line graph of the subdivision graph of TUC4C8(R)[p, q]
nanostructures.
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1. Introduction
In the field of molecular science, one of the key challenges lies in effectively visualizing chemical
compounds and accurately predicting their properties. In recent years, graph theory has proven
to be a valuable approach in addressing these issues. A molecular graph is a type of simple graph
in which atoms are represented by vertices and chemical bonds by edges. A powerful concept
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derived from molecular graphs is that of topological indices. These are numerical descriptors
that quantify specific aspects of a molecule’s structure, such as atom connectivity and path
lengths. It provides a bridge between molecular structure and physicochemical properties, and
have become indispensable in computational chemistry, particularly in the development of
predictive models. These indices are particularly important in QSPR and QSAR modeling,
which link molecular structure to properties or biological activities (Karelson [11]).

In this article, we studied simple, connected and undirected graphs. Let X = (V ,E) represent
a simple, connected graph, where V is the set of vertices and E is the set of edges. The number
of vertices in the graph is called the order and is denoted by n, while the number of edges is
referred to as the size, denoted by m. When two vertices u and v are directly connected by an
edge, we say they are adjacent, and the edge connecting them is written as uv. The degree of a
vertex u ∈V (X ) written as dX (u), is the number of edges incident to u. The neighborhood of a
vertex u is defined as the set of vertices adjacent to u. The degree sum of neighbor of a vertex u
is SX (u)= ∑

u∈NX (u)
dX (u). Let NX [u] be the closed neighborhood of a vertex u, that includes u and

its neighbors. The degree sum of closed neighbor of a vertex u is SX [u]= ∑
u∈NX [u]

SX (u)+dX (u)

(Basavanagoud et al. [3]). For additional graph terms and notations, refer to the works of Bondy
and Murty [4], and Harary [10].

First Zagreb index M1(X ) and second Zagreb index M2(X ) were introduced by Gutman and
Trinajstić [9]. These indices are defined as follows:

M1(X )= ∑
uv∈E(X )

(dX (u)+dX (v)), (1.1)

M2(X )= ∑
uv∈E(X )

dX (u)dX (v). (1.2)

In 2015, Furtula and Gutman [5] introduced a graph invariant known as the Forgotten index,
or the F-index. This index is defined as follows:

F(X )= ∑
uv∈E(X )

(dX (u)2 +dX (v)2). (1.3)

The Sombor index was recently introduced by Gutman [8] within the field of chemical graph
theory. This index is a vertex-degree-based topological measure, denoted as SO and is defined
as follows:

SO(X )= ∑
uv∈E(X )

√
dX (u)2 +dX (v)2. (1.4)

In 1975, Randic [14] introduced the Randic index, which is defined as:

R(X )= ∑
uv∈E(X )

1√
dX (u)dX (v)

. (1.5)

In 2013, Shirdel et al. [15] unveiled the first Hyper-Zagreb index, which is defined as follows:

HM1(X )= ∑
uv∈E(X )

(dX (u)+dX (v))2. (1.6)

In 2016, Gao et al. [7] defined a new distance-based Zagreb index, which they referred to as the
second Hyper-Zagreb index, and it is given by:

HM2(X )= ∑
uv∈E(X )

[dX (u)dX (v)]2. (1.7)
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The first neighborhood Zagreb index (Basavanagoud et al. [2]) is defined as

NM1(X )= ∑
u∈V (X )

SX (u)2. (1.8)

Another version of first neighborhood Zagreb index is

NM1(X )= ∑
uv∈E(X )

SX (u)+SX (v). (1.9)

The first closed neighborhood Zagreb index (Basavanagoud et al. [3]) is defined as

CM1(X )= ∑
u∈V (X )

SX [u]2. (1.10)

In recent days, several mathematicians and chemists are endeavoring to develop novel indices
for forecasting physicochemical behavior of chemical compounds. In this paper we introduce
newly defined seven closed neighborhood topological indices. It is expressed as:
The first closed neighborhood modified Zagreb index (CM1(X )) is defined as

CM1(X )= ∑
uv∈E(X )

SX [u]+SX [v]. (1.11)

The second closed neighborhood Zagreb index (CM2(X )) is expressed as

CM2(X )= ∑
uv∈E(X )

SX [u]SX [v]. (1.12)

The closed neighborhood Forgotten index (CF(X )) is given as

CF(X )= ∑
uv∈E(X )

SX [u]2 +SX [v]2. (1.13)

The closed neighborhood sombor index (CSO(X )) is defined as

CSO(X )= ∑
uv∈E(X )

√
SX [u]2 +SX [v]2. (1.14)

The closed neighborhood randic index (CR(X )) is defined as

CR(X )= ∑
uv∈E(X )

1√
SX [u]SX [v]

. (1.15)

The first and second closed neighborhood hyper Zagreb index is expressed as

CHM1(X )= ∑
uv∈E(X )

(SX [u]+SX [v])2, (1.16)

CHM2(X )= ∑
uv∈E(X )

(SX [u]SX [v])2. (1.17)

The following discussion is organized into five sections. In Section 2, we study mathematical
properties of closed neighborhood topological indices. In Sections 3 and 4 we explore its chemical
applications through regression models of octane isomers. The closed neighborhood topological
indices for some standard classes of graphs and some nanostructures is examined in Sections 5
and Section 6.

2. Mathematical Properties of Closed Neighborhood Topological
Indices

Theorem 2.1. Let X be a simple connected graph. Then

CM1(X )=NM1(X )+M1(X ).
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Proof. By using equation (1.11), we have

CM1(X )= ∑
uv∈E(X )

SX [u]+SX [v]

= ∑
uv∈E(X )

[SX (u)+dX (u)]+ [SX (v)+dX (v)]

=NM1(X )+M1(X ).

Theorem 2.2. Let X be a simple connected graph. Then

CM2(X )=NM1(X )+ND(X )+M2(X ).

Proof. By using equation (1.12), we have

CM2(X )= ∑
uv∈E(X )

SX [u]SX [v]

= ∑
uv∈E(X )

[SX (u)+dX (u)][SX (v)+dX (v)]

=NM1(X )+ND(X )+M2(X ),

where ND(X )= ∑
uv∈E(X )

[SX (u)dX (v)+dX (u)SX (v)].

Theorem 2.3. Let X be a simple connected graph. Then

CF(X )=NF(X )+F(X )+2ND1(X ).

Proof. By using equation (1.13), we have

CF(X )= ∑
uv∈E(X )

SX [u]2 +SX [v]2

= ∑
uv∈E(X )

[SX (u)+dX (u)]2 + [SX (v)+dX (v)]2

=NF(X )+F(X )+2ND1(X ),

where ND1(X )= ∑
uv∈E(X )

[SX (u)dX (u)+SX (v)dX (v)].

Theorem 2.4. Let X be a simple connected graph. Then

CSO(G)=
√

NF(X )+F(X )+2ND1(X ).

Proof. By using equation (1.14), we have

CSO(X )= ∑
uv∈E(X )

√
SX [u]2 +SX [v]2

= ∑
uv∈E(X )

√
[SX (u)+dX (u)]2 + [SX (v)+dX (v)]2

=
√

NF(X )+F(X )+2ND1(X ).

Theorem 2.5. Let X be a simple connected graph. Then

CR(X )= 1√
NM1(X )+ND(X )+M2(X )

.

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. 193–211, 2025



Investigating Some Novel Closed Neighborhood Topological Indices of Nanostructures: C. Gali and Bhuvana 197

Proof. By using equation (1.15), we have

CR(X )= ∑
uv∈E(X )

1√
SX [u]SX [v]

= ∑
uv∈E(X )

1√
[SX (u)+dX (u)][SX (v)+dX (v)]

= 1√
NM1(X )+ND(X )+M2(X )

.

Theorem 2.6. Let X be a simple connected graph. Then

CHM1(X )=NF(X )+F(X )+2ND1(X )+2(NM2(X )+ND(X )+M2(X ).

Proof. By using equation (1.16), we have

CHM1(X )= ∑
uv∈E(X )

(SX [u]+SX [v])2

= ∑
uv∈E(X )

([SX (u)+dX (u)]+ [SX (v)+dX (v)])2

= ∑
uv∈E(X )

[SX (u)+dX (u)]2 + [SX (v)+dX (v)]2 +2([SX (u)+dX (u)][SX (v)+dX (v)])

=NF(X )+F(X )+2ND1(X )+2(NM2(X )+ND(X )+M2(X ).

Theorem 2.7. Let X be a simple connected graph. Then

CHM2(X )= (NM1(X )+ND(X )+M2(X ))2

Proof. By using equation (1.17), we have

CHM2(G)= ∑
uv∈E(X )

(SX [u]SX [v])2

= ∑
uv∈E(X )

([SX (u)+dX (u)][SX (v)+dX (v)])2

= (NM1(X )+ND(X )+M2(X ))2.

3. Chemical Applicability of Closed Neighborhood Topological Indices
The correlation coefficient (|R|) is an important statistical value for measuring the strength
and direction of the linear relationship between predicted and observed values in QSAR and
QSPR analysis. In QSPR/QSAR modeling, a correlation coefficient greater than 0.8 is considered
statistically significant and very desirable, indicating that the topological index utilized is an
excellent predictor that can be confidently included in the model. Thus, determining |R| is an
important step in assessing the relevance and quality of descriptors used to create predictive
models in computational chemistry and drug design.

This section explores the linear regression analysis between some closed neighborhood
topological indices and various properties, such as acentric factor (AcentFac) and entropy
(S) to octane isomers. We have observed that these topological indices are highly correlated
with acentric factor. The physico-chemical properties of octane isomers (column 1-3) were
sourced from the International Academy of Mathematical Chemistry website (URL: http:
//www.iamc-online.org/) (Kuanar et al. [12]), and rest of the columns are obtained by the formulae
from (1.11)-(1.17) as detailed in Table 1.
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Table 1. Physico-chemical properties of Octane isomers

Octane Isomer AcentFac S CM1(X ) CM2(X ) CF(X ) CR(X ) CSO(X ) CHM1(X ) CHM2(X )

n-octane 0.397898 111.67 74 198 406 1.3815 52.7382 802 6138

2-methyl-heptane 0.377916 109.84 80 228 480 1.2825 57.3700 936 8154

3-methyl-heptane 0.371002 111.26 88 275 626 1.2375 64.2077 1176 13313

4-methyl-heptane 0.371504 109.32 82 244 522 1.2984 59.0711 1010 10196

3-ethyl-hexane 0.362472 109.43 84 257 562 1.2968 60.8847 1076 11899

2,2-dimethyl-hexane 0.339426 103.42 92 300 658 1.1501 66.5696 1258 14688

2,3-dimethyl-hexane 0.348247 108.02 90 285 640 1.1912 65.6140 1210 13067

2,4-dimethyl-hexane 0.344223 106.98 89 278 635 1.2049 64.9887 1191 11340

2,5-dimethyl-hexane 0.356883 105.72 86 259 554 1.1845 61.9475 1072 10339

3,3-dimethyl-hexane 0.322596 104.74 96 326 744 1.1486 70.2541 1396 18566

3,4-dimethyl-hexane 0.340345 106.59 98 335 800 1.1485 72.5292 1470 20953

2-methyl-3-ethyl pentane 0.332433 106.06 92 300 686 1.1949 67.4350 1286 16296

3-methyl-3-ethyl pentane 0.306899 101.48 100 349 830 1.1313 74.0455 1528 22135

2,2,3-trimethyl-pentane 0.300816 101.61 104 368 872 1.0471 76.8235 1608 23024

2,2,4-trimethyl-pentane 0.30537 104.03 98 335 740 1.0622 71.1410 1410 18173

2,3,3-trimethyl-pentane 0.293177 102.02 106 379 916 1.0356 78.730 1674 24813

2,3,4-trimethyl-pentane 0.317422 102.3 98 360 764 1.0888 72.1599 1420 18496

2,2,3,3-tetramethylbutane 0.25294 93.06 118 451 1118 0.8999 88.0546 2022 32791

The linear equation for each physical property acentric factor (AcentFac) and entropy (S)
with closed neighborhood topological indices are obtained using R software (R Core Team [13])
based on the data provided in Table 1.

4. Regression Models

1. For Acentric factor (AcentFac)

AcentFac= 0.6409905(±35.37)−0.0032800(±0.0001936)CM1(X ),

AcentFac= 5.060e−01(±1.080e−02)−5.542e−04(±3.452e−05)CM2(X ),
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AcentFac= 4.729e−01(±1.051e−02)−1.966e−04(±1.465e−05)CF(X ),

AcentFac= 0.6103346(±0.0179413)−0.0040358(±0.0002618)CSO(X ),

AcentFac=−0.01197(±0.02355)+0.29828(±0.02011)CR(X ),

AcentFac= 4.877e−01(±1.054e−02)−1.161e−04(±7.871e−06)CHM1(X ),

AcentFac= 4.174e−01(±7.554e−03)−4.990e−06(±4.290e−07)CHM2(X ).

2. For entropy (S)

S = 142.1534708(±3.95581)−0.39482(±0.04226)CM1(X ),

S = 125.982642(±2.227242)−0.066989(±0.007118)CM2(X ),

S = 121.885695(±2.010617)−0.023620(±0.002803)CF(X ),

S = 138.35906(±3.74594)−0.48427(±0.05466)CSO(X ),

S = 62.612(±4.161)+36.714(±3.553)CR(X ),

S = 123.668305(±2.126848)−0.013956(±0.001588)CHM1(X ),

S = 1.153e+02(±1.324e+00)−6.015e−04(±7.519e−05)CHM2(X ).

Table 2. Correlation coefficient and residual standard error of regression models for Acentric factor

Topological index Absolute value of the correlation
coefficient (|R|)

Residual standard error

CM1(X ) 0.9732 0.0083

CM2(X ) 0.9703 0.0088

CF(X ) 0.9583 0.0104

CSO(X ) 0.9679 0.0091

CR(X ) 0.9655 0.0095

CHM1(X ) 0.9651 0.0095

CHM2(X ) 0.9456 0.0118

Table 3. Correlation coefficient and residual standard error of regression models for Entropy

Topological index Absolute value of the correlation
coefficient (|R|)

Residual standard error

CM1(X ) 0.9193 1.8326

CM2(X ) 0.9203 1.8213

CF(X ) 0.9033 1.9968

CSO(X ) 0.9114 1.9161

CR(X ) 0.9325 1.6811

HM1(X ) 0.9101 1.9294

HM2(X ) 0.8944 2.0826
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(a) AcentFac v/s CM1 (b) AcentFac v/s CM2

(c) AcentFac v/s CF (d) AcentFac v/s CSO

(e) AcentFac v/s CR (f) AcentFac v/s CHM1

(g) AcentFac v/s CHM2

Figure 1. Linear regression of AcentFac v/s topological indices

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. 193–211, 2025



Investigating Some Novel Closed Neighborhood Topological Indices of Nanostructures: C. Gali and Bhuvana 201

(a) S v/s CM1 (b) S v/s CM2

(c) S v/s CF (d) S v/s CSO

(e) S v/s CR (f) S v/s CHM1

(g) S v/s CHM2

Figure 2. Linear regression of S v/s topological indices
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5. The Closed Neighborhood Topological Indices of Some Classes of
Graphs

In this section, we obtain the expressions of closed neighborhood topological indices for some
standard classes of graphs.

Theorem 5.1. For a path Pn with n ≥ 5,

(i) CM1(Pn)= 12n−22,

(ii) CM2(Pn)= 36n−90,

(iii) CF(Pn)= 72n−170,

(iv) CSO(Pn)= 8.4852n−15.1441,

(v) CR(Pn)= 0.1666n−0.0481,

(vi) CHM1(Pn)= 144n−350,

(vii) CHM2(Pn)= 1296n−4230.

Table 4. Edge partition of the path based on closed neighborhood degree

(dPn [u],dPn [v]), where uv ∈ E(Pn) (3,5) (5,6) (6,6)

Number of edges 2 2 n−5

Proof. The path graph has n vertices and n−1 edges. For n ≥ 5, the closed neighborhood degree
of two pendant vertex is 3, the closed neighborhood degree of two vertices which is adjacent to
pendant vertex is 5 and the closed neighborhood degree of remaining vertices is 6. Therefore, we
get the edge partition based on the closed neighborhood degree of vertices as shown in Table 4.
Using information in Table 4 to the formulae (1.11)-(1.17), we get the desired result.

Theorem 5.2. For a cycle Cn with n ≥ 3,

(i) CM1(Cn)= 12n,

(ii) CM2(Cn)= 36n,

(iii) CF(Cn)= 72n,

(iv) CSO(Cn)= n
p

72,

(v) CR(Cn)= n
6 ,

(vi) CHM1(Cn)= 144n,

(vii) CHM2(Cn)= 1296n.

Proof. The cycle graph has n vertices and m edges. For n ≥ 3, the closed neighborhood degree
of each vertex is 6. Therefore, using formulae (1.11)-(1.17) we get the desired result.

Theorem 5.3. For a complete graph Kn with n ≥ 3,

(i) CM1(Kn)= n(n−1)[n2 −n],

(ii) CM2(Kn)= n(n−1)
2 [n2 −n]2,

(iii) CF(Kn)= n(n−1)[(n−1)2 + (n−1)]2,

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. 193–211, 2025



Investigating Some Novel Closed Neighborhood Topological Indices of Nanostructures: C. Gali and Bhuvana 203

(iv) CSO(Kn)= n2(n−1)2p
2

,

(v) CR(Kn)= 1
2 ,

(vi) CHM1(Kn)= 2n3(n−1)3,

(vii) CHM2(Kn)= n5(n−1)5
2 .

Proof. The complete graph has n vertices and n(n−1)/2 edges. For n ≥ 3, the closed neighborhood
degree of each vertex is [(n−1)2 + (n−1)]. Therefore, using formulae (1.11)-(1.17) we obtain
the desired result.

Theorem 5.4. For a star graph K1,n with n ≥ 3,

(i) CM1(K1,n)= n(3n+1),

(ii) CM2(K1,n)= 2n2[n+1],

(iii) CF(K1,n)= n[5n2 +2n+1],

(iv) CSO(K1,n)= n
p

5n2 +2n+1,

(v) CR(K1,n)= 1p
2

[
np

n(n+1)

]
,

(vi) CHM1(K1,n)= n(3n+1)2,

(vii) CHM2(K1,n)= n(2n2 +2n)2.

Proof. The star graph [10] has n+1 vertices and n edges. For n ≥ 3, the closed neighborhood
degree of n pendant vertices are n+1 and the closed neighborhood degree of center vertex is 2n.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 5.5. For a crown graph S0
n with n ≥ 3,

(i) CM1(S0
n)= 2n2(n−1)2,

(ii) CM2(S0
n)= n(n−1)3,

(iii) CF(S0
n)= n(n−1)[2n4 −4n3 +2n2],

(iv) CSO(S0
n)=p

2n2(n−1)2,

(v) CR(S0
n)= 1,

(vi) CHM1(S0
n)= 4n3(n−1)3,

(vii) CHM2(S0
n)= n5(n−1)5.

Proof. The crown graph [6] has 2n vertices and n(n−1) edges. For n ≥ 3, the closed neighborhood
degree of each vertex is [(n−1)2 + (n−1)]. Therefore, using formulae (1.11)-(1.17) we obtain
the desired result.

Theorem 5.6. For a ladder graph Ln with n ≥ 5,

(i) CM1(Ln)= 72n−100,

(ii) CM2(Ln)= 432n−840,

(iii) CF(Ln)= 864n−1612,

(iv) CSO(Ln)= 50.9116n−69.4075,

(v) CR(Ln)= 0.25n+0.1048,
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(vi) CHM1(Ln)= 1728n−3292,

(vii) CHM2(Ln)= 62208n−162808.

Table 5. Edge partition of the ladder graph based on closed neighborhood degree

(dLn [u],dLn [v]), where uv ∈ E(Ln) (7,7) (7,11) (11,11) (11,12) (12,12)

Number of edges 2 4 2 4 (3n−14)

Proof. The ladder graph [6] has 2n vertices and n+ 2(n− 1) edges. For n ≥ 5, the closed
neighborhood degree of both end vertices is 7, the closed neighborhood degree of vertices which
is adjacent to end vertex is 11 and the closed neighborhood degree of remaining vertices is 12.
Therefore, we get the edge partition based on the closed neighborhood degree of vertices as
shown in Table 5. Using information in Table 5 to the formulae (1.11)-(1.17), we get the desired
result.

Theorem 5.7. For a wheel graph Wn with n ≥ 4,

(i) CM1(Wn)= n(7n+27),

(ii) CM2(Wn)= n(5n2 +54n+81),

(iii) CF(Wn)= n(19n2 +54n+243),

(iv) CSO(Wn)= n[
p

2(n+9)+
p

17n2 +18n+81],

(v) CR(Wn)= 1
2

[
np

n(n+9)

]
,

(vi) CHM1(Wn)= n(27n2 +126n+243),

(vii) CHM2(Wn)= n[(n+9)4 + (4n2 +36n)2].

Proof. The wheel graph [6] has n+1 vertices and 2n edges. For n ≥ 4, the closed neighborhood
degree of each corner vertex is 9+n and the closed neighborhood degree of the center vertex is
4n. Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 5.8. For a gear graph Gn with n ≥ 3,

(i) CM1(Gn)= n(7n+37),

(ii) CM2(Gn)= n(4n2 +44n+112),

(iii) CF(Gn)= n(19n2 +42n+275),

(iv) CSO(Gn)= n[
√

(17n2 +14n+49)+2
√

(n2 +14n+113)],

(v) CR(Gn)= n
2
p

n(n+7)
+ np

2(n+7)
,

(vi) CHM1(Gn)= n(27n2 +130n+499),

(vii) CHM2(Gn)= n(16n4 +224n3 +912n2 +1792n+6272).

Proof. The gear graph [1] has 2n+1 vertices and 3n edges. By definition of Gn, the center vertex
is of degree n and outer layer vertex is of degree alternative 3 and 2. The closed neighborhood
degree of the center vertex is 4n, the closed neighborhood degree of each corner vertex adjacent
to the center vertex is n+7 and the closed neighborhood degree of remaining vertices is 8.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.
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Theorem 5.9. For a friendship graph Fn with n ≥ 2,

(i) CM1(Fn)= n(20n+16),

(ii) CM2(Fn)= 4n(7n2 +16n+4),

(iii) CF(Fn)= n(88n2 +64n+64),

(iv) CSO(Fn)=p
2n(2n+4)+4n

√
(10n2 +4n+4),

(v) CR(Fn)= n
2(n+2) + np

n(3n+6)
,

(vi) CHM1(Fn)= n(144n2 +192n+96),

(vii) CHM2(Fn)= n(2n+4)4 +2n(12n2 +24n)2.

Proof. The friendship graph [6] has 2n+1 vertices and 3n edges. By definition of Fn, 2n vertices
are of degree 2 and the center vertex is of degree 2n. The closed neighborhood degree of the
center vertex is 6n and the closed neighborhood degree of the remaining vertices is 2n+4.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 5.10. For a cocktail party graph CPn,n with n ≥ 2,

(i) CM1(CPn,n)= 8n(n−1)2(2n−1),

(ii) CM2(CPn,n)= 2n(n−1)(4n2 −6n+2)2,

(iii) CF(CPn,n)= 16n(n−1)3[4(n−1)2 +4(n−1)+1],

(iv) CSO(CPn,n)= 4
p

2n(n−1)2(2n−1),

(v) CR(CPn,n)= n
2n−1 ,

(vi) CHM1(CPn,n)= 16n(n−1)3[4(n−1)2 +4(n−1)+1],

(vii) CHM2(CPn,n)= 2n(n−1)[4(n−1)2 +2(n−1)]4.

Proof. The cocktail party graph [6] has 2n vertices and 2n(n−1) edges. For n ≥ 2, the closed
neighborhood degree of the each vertex is 4(n−1)2+2(n−1). Therefore, using formulae (1.11)-
(1.17) we obtain the desired result.

Theorem 5.11. For a helm graph Hn with n ≥ 3,

(i) CM1(Hn)= 3n(3n+19),

(ii) CM2(Hn)= 6n(13+n)(n+3),

(iii) CF(Hn)= n(29n2 +104n+701),

(iv) CSO(Hn)= n[
p

26n2 +26n+169+p
2(13+n)+

√
(n2 +26n+194)],

(v) CR(Hn)= n
[

1
5n(13+n) + 1

13+n + 1
5(13+n)

]
,

(vi) CHM1(Hn)= n(41n2 +296n+1169),

(vii) CHM2(Hn)= n(13+n)2(26n2 +26n+194).

Proof. The helm graph [6] has 2n+1 vertices and 3n edges. By definition of Hn, the center
vertex is of degree n and outer pendent vertex is of degree 1 and the rest is of degree 4. The closed
neighborhood degree of center vertex is 5n, the closed neighborhood degree of outer pendent
vertex is 5 and the closed neighborhood degree of remaining vertices is 13+n. Therefore, using
formulae (1.11)-(1.17) we obtain the desired result.
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6. Closed Neighborhood Topological Indices of Some Nanostructures
Nanostructures are materials with at least one dimension in the nanometer range, often
exhibiting unique physical, chemical, and biological properties due to their small size. These
structures can take various forms, including 2D lattices, nanotubes and nanotorus.

A 2D lattice is a flat, two-dimensional arrangement of atoms or molecules, such as graphene,
that exhibits exceptional properties like high conductivity and strength. Nanotubes often made
of carbon, are cylindrical structures with remarkable mechanical and electrical properties, used
in a wide range of applications from electronics to materials science. Meanwhile, a nanotorus is a
unique toroidal (doughnut-shaped) nanostructure that can possess distinct magnetic, electronic,
and catalytic properties due to its circular geometry. Together, these nanostructures represent a
versatile toolkit for advancing technologies across fields such as electronics, energy, medicine,
and materials science. The nanostructures of TUC4C8(R)[p, q], where p and q represents the
number of squares in each row and the number of rows of squares.

(a) 2D-lattice TUC4C8(R)[4,3] (b) Nanotube TUC4C8(R)[4,3] (c) Nanotorus TUC4C8(R)[4,3]

Figure 3

Theorem 6.1. Let X be 2D-lattice of TUC4C8(R)[p, q]. Then

(i) CM1(X )= 92(p+ q)+8,

(ii) CM2(X )= 864pq−462(p+ q)+172,

(iii) CF(X )= 1728pq−884(p+ q)+8792,

(iv) CSO(X )= 101.823pq−36.044(p+ q)+5.231,

(v) CR(X )= 0.5pq+0.0397(p+ q)−0.3772,

(vi) CHM1(X )= 3456pq−1808(p+ q)+656,

(vii) CHM2(X )= 124416pq−98142(p+ q)+69068.

Table 6. Edge partition of graph X , when p > 1, q > 1

(SX [u],SX [v]), (7,7) (7,11) (8,11) (11,11) (11,12) (12,12)

where uv ∈ E(X )

Number of edges 4 8 4(p+ q)−16 2(p+ q) 4(p+ q)−16 6pq−11(p+ q)+20

Proof. The 2D-lattice of TUC4C8(R)[p, q] has 4pq vertices and 6pq− p− q edges. Therefore,
edge partition of X , based on closed neighborhood degree of vertices as shown in Table 6.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.
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Theorem 6.2. Let S(X ) be subdivision graph of 2D-lattice of TUC4C8(R)[p, q]. Then

(i) CM1(S(X ))= 286(p+ q)+204pq,

(ii) CM2(S(X ))= 864pq−300(p+ q)+24,

(iii) CF(S(X ))= 1756−590(p+ q),

(iv) CSO(S(X ))= 144.498pq−37.9302(p+ q)−0.756,

(v) CR(S(X ))= 1.4142pq−0.0574(p+ q)+0.0338,

(vi) CHM1(S(X ))= 3468pq−1190(p+ q)+64,

(vii) CHM2(S(X ))= 62208pq−28908(p+ q)+5976.

Table 7. Edge partition of graph S(X ), when p > 1, q > 1

(SS(X )[u],SS(X )[v]), where uv ∈ E(S(X )) (6,6) (6,7) (7,9) (8,9)

Number of edges 8 4(p+ q)−8 4(p+ q)−8 12pq−10(p+ q)+8

Proof. The subdivision graph S(X ) has 10pq−p−q vertices and 2(6pq−p−q) edges. Therefore,
edge partition of S(X ), based on closed neighborhood degree of vertices as shown in Table 7.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.3. Let L(S(X )) be line graph of subdivision graph of 2D-lattice TUC4C8(R)[p, q].
Then

(i) CM1(L(S(X )))= 432pq−172(p+ q)+8,

(ii) CM2(L(S(X )))= 2592pq−1274(p+ q)+240,

(iii) CF(L(S(X )))= 5184pq−2476(p+ q)+344,

(iv) CSO(L(S(X )))= 305.470pq−140.057(p+ q)+3.144,

(v) CR(L(S(X )))= 1.5pq−0.1455(p+ q)+0.120,

(vi) CHM1(L(S(X )))= 10368pq−5024(p+ q)+824,

(vii) CHM2(L(S(X )))= 373248pq−226074(p+ q)+88592.

Table 8. Edge partition of graph L(S(X )), when p > 1,q > 1

(SL(S(X ))[u],SL(S(X ))[v]), (6,6) (6,7) (7,7) (7,11) (11,12) (12,12)

where uv ∈ E(L(S(X )))

Number of edges 4 8 2(p+ q)−8 4(p+ q)−8 8(p+ q)−16 18pq−19(p+ q)+20

Proof. The line graph of subdivision graph L(S(X )) has 2(6pq− p−q) vertices and (18pq−5p−
5q) edges. Therefore, edge partition of L(S(X )), based on closed neighborhood degree of vertices
as shown in Table 8. Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.4. Let Y be TUC4C8(R)[p, q] nanotubes. Then

(i) CM1(Y )= 4(36pq−10p−3q−11),
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(ii) CM2(Y )= 864pq−326p−144q−450,

(iii) CF(Y )= 1728pq−632p−252q−868,

(iv) CSO(Y )= 101.823pq−27.920p−7.882q−30.472,

(v) CR(Y )= 0.083pq+0.4857p+0.0519q+0.2311,

(vi) CHM1(Y )= 3456pq−1284p−2268q−1768,

(vii) CHM2(Y )= 124416pq−65534p−36288q−93090.

Table 9. Edge partition of graph Y , when p > 1, q > 1

(SY [u],SY [v]), (8,8) (8,11) (11,11) (8,12) (11,12) (9,12) (12,12)

where uv ∈ E(Y )

Number of edges 4 2(p+2) 2(p−1) 4 2(p+2) 4(q−2) 6pq−7p−4q−6

Proof. The TUC4C8(R)[p, q] nanotube has 4pq vertices and 6pq− p edges. Therefore, edge
partition of S(Y ), based on closed neighborhood degree of vertices as shown in Table 9. Therefore,
using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.5. Let S(Y ) be subdivision graph of TUC4C8(R)[p, q] nanotubes. Then

(i) CM1(S(Y ))= 204pq−54p−7q,

(ii) CM2(S(Y ))= 864pq−300p−59q+4,

(iii) CF(S(Y ))= 1740pq−590p−103q,

(iv) CSO(S(Y ))= 144.499pq−37.930p−4.567q−0.181,

(v) CR(S(Y ))= 1.414pq−0.0574p+0.0627q+0.0023,

(vi) CHM1(S(Y ))= 3468pq−1190p−221q+8,

(vii) CHM2(S(Y ))= 62208pq−28908p−7255q+960.

Table 10. Edge partition of graph S(Y ), when p > 1, q > 1

(SS(Y )[u],SS(Y )[v]), where uv ∈ E(S(Y )) (5,9) (6,7) (7,7) (7,8) (7,9) (8,9)

Number of edges q 4p 2 2q−2 4p−2 12pq−10p−3q+2

Proof. The subdivision graph S(Y ) has 10pq − p vertices and 2(6pq− p) edges. Therefore,
edge partition of S(Y ), based on closed neighborhood degree of vertices as shown in Table 10.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.6. Let L(S(Y )) be line graph of subdivision graph of nanotube. Then

(i) CM1(L(S(Y )))= 432pq−168p−24q+8,

(ii) CM2(L(S(Y )))= 2592pq−1226p−274q+96,

(iii) CF(L(S(Y )))= 5184pq−2384p−528q+184,

(iv) CSO(L(S(Y )))= 305.470pq−117.490p−16.627q+5.534,
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(v) CR(L(S(Y )))= 0.4330pq−0.015p+0.036q−0.0086,

(vi) CHM1(L(S(Y )))= 10368pq−4836p−1076q+376,

(vii) CHM2(L(S(Y )))= 373248pq−21282p−69178q+26496.

Table 11. Edge partition of graph L(S(Y )), when p > 1, q > 1

(SL(S(Y ))[u],SL(S(Y ))[v]), (7,7) (7,11) (9,11) (11,11) (11,12) (12,12)

where uv ∈ E(L(S(Y )))

Number of edges 2p 4p 4q 2q 4p+4q−8 18pq−5(3p+2q)+8

Proof. The line graph of subdivision graph L(S(Y )) has 2(6pq− p) vertices and (18pq−5p)
edges. Therefore, edge partition of L(S(Y )), based on closed neighborhood degree of vertices as
shown in Table 11. Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.7. Let Z be TUC4C8(R)[p, q] nanotorus. Then

(i) CM1(Z)= 144pq−12(p+ q),

(ii) CM2(Z)= 864pq−144(p+ q)+36,

(iii) CF(Z)= 1728pq−252(p+ q),

(iv) CSO(Z)= 101.823pq−7.882(p+ q)−1.206,

(v) CR(Z)= 0.5pq+0.0516(p+ q)+0.7777,

(vi) CHM1(Z)= 3456pq−540(p+ q)+72,

(vii) CHM2(Z)= 124416pq−36288(p+ q)+15876.

Table 12. Edge partition of graph Z, when p > 1, q > 1

(SZ[u],SZ[v]), where uv ∈ E(Z) (9,9) (9,12) (12,12)

Number of edges 4 4(p+ q)−8 6pq−4(p+ q)+4

Proof. The TUC4C8(R)[p, q] nanotorus has 4pq vertices and 6pq edges. Therefore, edge
partition of Z, based on closed neighborhood degree of vertices as shown in Table 12. Therefore,
using formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.8. Let S(Z) be subdivision graph of TUC4C8(R)[p, q] nanotorus. Then

(i) CM1(S(Z))= 204pq−7(p+ q),

(ii) CM2(S(Z))= 864pq−59(p+ q),

(iii) CF(S(Z))= 1740pq−103(p+ q),

(iv) CSO(S(Z))= 144.499pq−4.5689(p+ q),

(v) CR(S(Z))= 1.4142pq+0.0627(p+ q),

(vi) CHM1(S(Z))= 3468pq−221(p+ q),

(vii) CHM2(S(Z))= 62208pq−7255(p+ q).
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Table 13. Edge partition of graph S(Z), when p > 1, q > 1

(SS(Z)[u],SS(Z)[v]), where uv ∈ E(S(Z)) (5,9) (7,8) (8,9)

Number of edges p+ q 2(p+ q) 12pq−3(p+ q)

Proof. The subdivision graph S(Z) has 10pq vertices and 12pq edges. Therefore, edge partition
of S(Z), based on closed neighborhood degree of vertices as shown in Table 13. Therefore, using
formulae (1.11)-(1.17) we obtain the desired result.

Theorem 6.9. Let L(S(Z)) be line graph of subdivision graph of nanotorus. Then

(i) CM1(L(S(Z)))= 432pq−12(p+ q),

(ii) CM2(L(S(Z)))= 2592pq−144(p+ q),

(iii) CF(L(S(Z)))= 5184pq+45504(p+ q),

(iv) CSO(L(S(Z)))= 305.4701pq−7.8822(p+ q),

(v) CR(L(S(Z)))= 1.5pq+0.0516(p+ q),

(vi) CHM1(L(S(Z)))= 10368pq−540(p+ q),

(vii) CHM2(L(S(Z)))= 373248pq−36288(p+ q).

Table 14. Edge partition of graph L(S(Z)), when p > 1, q > 1

(SL(S(Z))[u],SL(S(Z))[v]), where uv ∈ E(L(S(Z))) (9,12) (12,12)

Number of edges 4(p+ q) 18pq−4(p+ q)

Proof. The line graph of subdivision graph L(S(Z)) has 12pq vertices and 18pq edges. Therefore,
edge partition of S(X ), based on closed neighborhood degree of vertices as shown in Table 14.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result.

7. Conclusion
In this research, we introduced seven closed neighborhood topological indices and we examined
its QSPR properties such as entropy and acentric factor to octane isomer. These indices highly
correlates with the acentric factor of octane isomers. Later we obtain explicit formulae of these
indices to nanostructures. The obtained results shed light on new aspects in the discipline of
structural chemistry and also showcase practical relevance in forecasting the characteristics of
topological indices at the preliminary analysis.
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