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Abstract. Chemical graph theory plays an essential role in mathematical chemistry by representing
chemical compounds as molecular graphs and utilizing graph-theoretical methods to analyze them.
Topological indices (TIs) are numerical parameters that describe the structure of a molecular graph.
In this work, we introduced newly defined seven closed neighborhood topological indices and compute
the same for some standard classes of graphs. Later we examine these indices with some physical
properties of octane isomers. Our indices exhibits highly correlation with acentric factor of octane
isomers. Additionally we derive the expression for seven TT’s of TUC4Cg(R)[p,q] nanostructures
as well as subdivision graph and the line graph of the subdivision graph of TUC4Cgs(R)Ip,q]l
nanostructures.
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1. Introduction

In the field of molecular science, one of the key challenges lies in effectively visualizing chemical
compounds and accurately predicting their properties. In recent years, graph theory has proven
to be a valuable approach in addressing these issues. A molecular graph is a type of simple graph
in which atoms are represented by vertices and chemical bonds by edges. A powerful concept
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derived from molecular graphs is that of topological indices. These are numerical descriptors
that quantify specific aspects of a molecule’s structure, such as atom connectivity and path
lengths. It provides a bridge between molecular structure and physicochemical properties, and
have become indispensable in computational chemistry, particularly in the development of
predictive models. These indices are particularly important in QSPR and QSAR modeling,
which link molecular structure to properties or biological activities (Karelson [11]).

In this article, we studied simple, connected and undirected graphs. Let X =(V,E) represent
a simple, connected graph, where V is the set of vertices and E is the set of edges. The number
of vertices in the graph is called the order and is denoted by n, while the number of edges is
referred to as the size, denoted by m. When two vertices v and v are directly connected by an
edge, we say they are adjacent, and the edge connecting them is written as uv. The degree of a
vertex u € V(X) written as dx(u), is the number of edges incident to . The neighborhood of a
vertex u is defined as the set of vertices adjacent to u. The degree sum of neighbor of a vertex u

isSx(wu)= Y dx(u).Let Nx[u]be the closed neighborhood of a vertex u, that includes u and
ueNx(u)
its neighbors. The degree sum of closed neighbor of a vertex u is Sx[ul= Y Sxw)+dx(u)
ueNxlul
(Basavanagoud et al. [3]). For additional graph terms and notations, refer to the works of Bondy

and Murty [4], and Harary [10].
First Zagreb index M1(X) and second Zagreb index M9(X) were introduced by Gutman and
Trinajsti¢ [9]]. These indices are defined as follows:

MiX)= ) (dx@)+dx©)), (1.1)
uveE(X)

MyX)= ) dx(wdx). (1.2)
uveE(X)

In 2015, Furtula and Gutman [5] introduced a graph invariant known as the Forgotten index,
or the F-index. This index is defined as follows:
FX)= )Y (dx@?+dx@)?. (1.3)
uveE(X)
The Sombor index was recently introduced by Gutman [|8] within the field of chemical graph
theory. This index is a vertex-degree-based topological measure, denoted as SO and is defined
as follows:

SOX)= Y \Jdx@?+dx)?. (1.4)
uveE(X)
In 1975, Randic [14] introduced the Randic index, which is defined as:
1
R(X)= Z —_— (1.5)
weE(X) Vdx(w)dx(v)
In 2013, Shirdel et al. [[15] unveiled the first Hyper-Zagreb index, which is defined as follows:
HM:(X)= Y (dx()+dx®))> (1.6)
uveE(X)

In 2016, Gao et al. [7]] defined a new distance-based Zagreb index, which they referred to as the
second Hyper-Zagreb index, and it is given by:

HMyX)= Y [dxwdx). (1.7)
uveE(X)
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The first neighborhood Zagreb index (Basavanagoud et al. [2]]) is defined as

NMi(X)= Y. Sx@). (1.8)
ueV(X)
Another version of first neighborhood Zagreb index is
NM;(X) = Z Sx(u)+Sx). (1.9
uveE(X)
The first closed neighborhood Zagreb index (Basavanagoud et al. [3]) is defined as
CM(X)= Y Sxlul. (1.10)
ueV(X)

In recent days, several mathematicians and chemists are endeavoring to develop novel indices
for forecasting physicochemical behavior of chemical compounds. In this paper we introduce
newly defined seven closed neighborhood topological indices. It is expressed as:

The first closed neighborhood modified Zagreb index (CM (X)) is defined as

CM(X)= ) Sxlul+Sxlvl (1.11)
uveE(X)
The second closed neighborhood Zagreb index (CMy(X)) is expressed as
CMyX)= ) Sxl[ulSxlvl. (1.12)
uveE(X)
The closed neighborhood Forgotten index (CF(X)) is given as
CFX)= Y Sxlul®+Sx[vl (1.13)
uveE(X)
The closed neighborhood sombor index (CSO(X)) is defined as
CSOX)= Y \/Sxlul?+Sx[vE. (1.14)
uveE(X)
The closed neighborhood randic index (CR(X)) is defined as
1
CRX)= ) ———. (1.15)

weE(X) VSx[ulSxlv]
The first and second closed neighborhood hyper Zagreb index is expressed as

CHM(X)= Y (Sx[ul+Sx[v]? (1.16)
uveE(X)

CHMyX)= Y (SxlulSx[v])?’. (1.17)
uveE(X)

The following discussion is organized into five sections. In Section [2| we study mathematical
properties of closed neighborhood topological indices. In Sections [3|and [4] we explore its chemical
applications through regression models of octane isomers. The closed neighborhood topological
indices for some standard classes of graphs and some nanostructures is examined in Sections
and Section [6l

2. Mathematical Properties of Closed Neighborhood Topological
Indices
Theorem 2.1. Let X be a simple connected graph. Then
CM1(X) =NM1(X) + M1(X).
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Proof. By using equation (1.11), we have

CMiX)= Y Sxlul+Sxlv]
uveE(X)

Y [Sx(w)+dx@)]+[Sx()+dx )]
uveE(X)

= NM1(X) + M1(X).

Theorem 2.2. Let X be a simple connected graph. Then
CMy(X)=NM1(X)+ND(X)+ My(X).

Proof. By using equation (1.12), we have

CMy(X)= ) SxlulSxlv]
uveE(X)

Y [Sx)+dx@)ISx(@)+dx®)]
uveE(X)

NM1(X)+ND(X) + Ma(X),

where ND(X)= Y [Sxw)dx@)+dxw)Sx ).
uveE(X)

Theorem 2.3. Let X be a simple connected graph. Then
CF(X)=NF(X)+F(X)+2ND1(X).

Proof. By using equation (1.13), we have

CFX)= ) Sxlul’+Sx[vl?
uveE(X)

= Y [Sx@+dx@?®+[Sx@)+dx®)?
uveE(X)

=NF(X)+F(X)+2ND:(X),

where ND1(X) = %(X)[Sx(u)dx(u) +Sx()dx(v)].

Theorem 2.4. Let X be a simple connected graph. Then
CSO(G) = \/NF(X)+F(X)+2ND:(X).

Proof. By using equation (1.14), we have

CSOX)= Y \/Sx[ul+Sx[v]?
uveE(X)

= Y /ISx@)+dx@P +[Sx(0)+dx ()P
uveE(X)

= /NF(X) + F(X) + 2ND1(X).

Theorem 2.5. Let X be a simple connected graph. Then
1

CR(X)= .
VNM1(X)+ND(X) + M3(X)
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Proof. By using equation (1.15), we have

CRX)= ) S
weEX) VSx[ulSxlv]
1

uue%(X) VISx(w) +dxWSx () +dx ()]
1

VNM{(X)+ND(X) + My(X)
Theorem 2.6. Let X be a simple connected graph. Then
CHM(X)=NF(X)+F(X)+2ND1(X)+ 2(NMy(X) + ND(X) + Mo(X).

Proof. By using equation (1.16), we have
CHM:(X)= Y (Sxlul+Sx[v])?
uveE(X)

= Y (Sxw)+dx@]+[Sx®)+dx®)])?
uveE(X)

= Y [Sxw)+dx@)PP+[Sx@®)+dx®)?+2(Sxw) +dx@)]Sx (@) +dx®)])
uveE(X)

=NF(X)+F(X)+2ND1(X) +2(NMo(X) + ND(X) + Mo(X).

Theorem 2.7. Let X be a simple connected graph. Then
CHM(X) = (NM1(X) + ND(X) + Ma(X))?

Proof. By using equation (1.17), we have
CHM3(G)= Y (Sx[ulSx[v])?
uveE(X)

= ) ([Sx(w) +dx(WISx(v) +dx ()]
uveE(X)

= (NM(X) +ND(X) + Mo(X))?. O

3. Chemical Applicability of Closed Neighborhood Topological Indices

The correlation coefficient (|R|) is an important statistical value for measuring the strength
and direction of the linear relationship between predicted and observed values in QSAR and
QSPR analysis. In QSPR/QSAR modeling, a correlation coefficient greater than 0.8 is considered
statistically significant and very desirable, indicating that the topological index utilized is an
excellent predictor that can be confidently included in the model. Thus, determining |R| is an
important step in assessing the relevance and quality of descriptors used to create predictive
models in computational chemistry and drug design.

This section explores the linear regression analysis between some closed neighborhood
topological indices and various properties, such as acentric factor (AcentFac) and entropy
(S) to octane isomers. We have observed that these topological indices are highly correlated
with acentric factor. The physico-chemical properties of octane isomers (column 1-3) were
sourced from the International Academy of Mathematical Chemistry website (URL: http:
//’www.iame-online.org/) (Kuanar et al. [12]), and rest of the columns are obtained by the formulae

from (1.11)-(1.17) as detailed in Table
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Table 1. Physico-chemical properties of Octane isomers

Octane Isomer AcentFac S CM1(X) | CMy(X) | CF(X) | CR(X) | CSO(X) | CHM(X) | CHM(X)
n-octane 0.397898 | 111.67 74 198 406 | 1.3815 | 52.7382 802 6138
2-methyl-heptane 0.377916 | 109.84 80 228 480 | 1.2825 | 57.3700 936 8154
3-methyl-heptane 0.371002 | 111.26 88 275 626 | 1.2375 | 64.2077 1176 13313
4-methyl-heptane 0.371504 | 109.32 82 244 522 | 1.2984 | 59.0711 1010 10196
3-ethyl-hexane 0.362472 | 109.43 84 257 562 | 1.2968 | 60.8847 1076 11899
2,2-dimethyl-hexane 0.339426 | 103.42 92 300 658 | 1.1501 | 66.5696 1258 14688
2,3-dimethyl-hexane 0.348247 | 108.02 90 285 640 | 1.1912 | 65.6140 1210 13067
2,4-dimethyl-hexane 0.344223 | 106.98 89 278 635 | 1.2049 | 64.9887 1191 11340
2,5-dimethyl-hexane 0.356883 | 105.72 86 259 5564 | 1.1845 | 61.9475 1072 10339
3,3-dimethyl-hexane 0.322596 | 104.74 96 326 744 | 1.1486 | 70.2541 1396 18566
3,4-dimethyl-hexane 0.340345 | 106.59 98 335 800 | 1.1485 | 72.5292 1470 20953
2-methyl-3-ethyl pentane | 0.332433 | 106.06 92 300 686 | 1.1949 | 67.4350 1286 16296
3-methyl-3-ethyl pentane | 0.306899 | 101.48 100 349 830 | 1.1313 | 74.0455 1528 22135
2,2,3-trimethyl-pentane | 0.300816 | 101.61 104 368 872 | 1.0471 | 76.8235 1608 23024
2,2,4-trimethyl-pentane 0.30537 | 104.03 98 335 740 | 1.0622 | 71.1410 1410 18173
2,3,3-trimethyl-pentane | 0.293177 | 102.02 106 379 916 | 1.0356 | 78.730 1674 24813
2,3,4-trimethyl-pentane | 0.317422 | 102.3 98 360 764 | 1.0888 | 72.1599 1420 18496
2,2,3,3-tetramethylbutane | 0.25294 | 93.06 118 451 1118 | 0.8999 | 88.0546 2022 32791

The linear equation for each physical property acentric factor (AcentFac) and entropy (S)
with closed neighborhood topological indices are obtained using R software (R Core Team [13]])
based on the data provided in Table

4. Regression Models

1. For Acentric factor (AcentFac)
AcentFac = 0.6409905(+35.37) — 0.0032800(+0.0001936)CM 1(X),
AcentFac =5.060e —01(+1.080e — 02) — 5.542e — 04(£3.452¢ — 05)CM o(X),
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AcentFac =4.729e — 01(£1.051e — 02) — 1.966e — 04(+1.465e — 05)CF(X),
AcentFac =0.6103346(+0.0179413) — 0.0040358(+£0.0002618)CSO(X),
AcentFac =-0.01197(£0.02355) + 0.29828(+£0.02011)CR(X),

AcentFac =4.877e —01(+1.054e — 02) — 1.161e — 04(+7.871e — 06)CHM 1(X),
AcentFac =4.174e — 01(+7.554e — 03) — 4.990e — 06(+4.290e — 07)CHM 9(X).

2. For entropy (S)

S =142.1534708(+£3.95581) — 0.39482(+0.04226)CM 1(X),
S =125.982642(+£2.227242) - 0.066989(+£0.007118)CM 2(X),
S =121.885695(+£2.010617) — 0.023620(+£0.002803)CF(X),

S =138.35906(+3.74594) — 0.48427(+0.05466)CSO(X),

S =62.612(+4.161) + 36.714(£3.553)CR(X),
S =123.668305(+£2.126848) —0.013956(+0.001588)CHM (X)),
S =1.153e +02(£1.324e + 00) — 6.015e¢ — 04(£7.519e — 05)CHM 2(X).

Table 2. Correlation coefficient and residual standard error of regression models for Acentric factor

Topological index | Absolute value of the correlation | Residual standard error
coefficient (|R|)

CM(X) 0.9732 0.0083
CMy(X) 0.9703 0.0088
CF(X) 0.9583 0.0104
CSO(X) 0.9679 0.0091
CR(X) 0.9655 0.0095
CHM(X) 0.9651 0.0095
CHMy(X) 0.9456 0.0118

Table 3. Correlation coefficient and residual standard error of regression models for Entropy

Topological index | Absolute value of the correlation | Residual standard error
coefficient (JR])
CM(X) 0.9193 1.8326
CMo(X) 0.9203 1.8213
CF(X) 0.9033 1.9968
CSO(X) 0.9114 1.9161
CR(X) 0.9325 1.6811
HM(X) 0.9101 1.9294
HMy(X) 0.8944 2.0826
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5. The Closed Neighborhood Topological Indices of Some Classes of
Graphs

In this section, we obtain the expressions of closed neighborhood topological indices for some
standard classes of graphs.

Theorem 5.1. For a path P, with n =5,

(i) CM(P,)=12n—-22,
(ii) CM2(P,)=36n-90,

(iii)) CF(P,)="72n-170,

(iv) CSO(P,)=28.4852n —15.1441,
(v) CR(P,)=0.1666n —0.0481,

(vi) CHM(P,) = 144n — 350,

(vil) CHM(P,) =1296n —4230.

Table 4. Edge partition of the path based on closed neighborhood degree

(dp,[ul,dp,[v]), where uv e E(P,) | (3,5) | (5,6) | (6,6)
Number of edges 2 2 n->5

Proof. The path graph has n vertices and n —1 edges. For n = 5, the closed neighborhood degree
of two pendant vertex is 3, the closed neighborhood degree of two vertices which is adjacent to
pendant vertex is 5 and the closed neighborhood degree of remaining vertices is 6. Therefore, we
get the edge partition based on the closed neighborhood degree of vertices as shown in Table
Using information in Table [4 to the formulae (1.11)-(1.17), we get the desired result. O

Theorem 5.2. For a cycle C,, with n =3,
(i) CM1(Cy)=12n,
(i) CMq(Cp)=36n,
(iii)) CF(C,)="12n,
(iv) CSO(C,) =nV72,
(v) CR(C,) =3,
(vi) CHM(C,) =144n,
(vii) CHM(C},) = 1296n.

Proof. The cycle graph has n vertices and m edges. For n = 3, the closed neighborhood degree
of each vertex is 6. Therefore, using formulae (1.11)-(1.17) we get the desired result. O

Theorem 5.3. For a complete graph K, with n =3,
(i) CM1(K,) =n(n—-1)[n%-n],
(ii) CM(K,) =22D[n2 - n)?,
(iii) CF(K,)=n(n-Dl(n-1?+(n -1,

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. (193 , 2025



Investigating Some Novel Closed Neighborhood Topological Indices of Nanostructures: C. Gali and Bhuvana 203

(iv) CSO(K,,) = nz(n—élﬂ

(v) CR(K,) =1,

(vi) CHM(K,) =2n3(n - 1),
(vii) CHM(K,) = 201,

Proof. The complete graph has n vertices and n(n—1)/2 edges. For n = 3, the closed neighborhood

degree of each vertex is [(n — 1)2 + (n — 1)]. Therefore, using formulae (IT.11)-(1.17) we obtain
the desired result. 0

Theorem 5.4. For a star graph K1, with n =3,
(i) CM1(K1,)=n(@8n+1),
(i) CM3(K1,)=2n2[n+1],
(iii) CF(K1,,)=nlbn®+2n +1],
(iv) CSO(K1,)=nV5n2+2n+1,

V) CR(K1,) = & | =2
(vi) CHM1(K1,) = n(3n + 1)?,

(vii) CHM (K1 ,,) = n(2n? +2n)2.

2

Proof. The star graph [[10] has n + 1 vertices and n edges. For n = 3, the closed neighborhood
degree of n pendant vertices are n + 1 and the closed neighborhood degree of center vertex is 2n.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 5.5. For a crown graph S?L with n =3,
(1) CM1(S9)=2n2%(n-1)%,
(i) CM2(S%) =n(n-1)3,
(iii) CF(S?)=n(n-1)[2n*-4n3+2n?),
(iv) CSO(S%) =Vv2n%(n-1)?%,
(v) CR(S9) =1,
(vi) CHM1(S9) =4n3(n-1)3,
(vii) CHM3(S%) =n%(n-1)°.

Proof. The crown graph [|6] has 2n vertices and n(n—1) edges. For n = 3, the closed neighborhood

degree of each vertex is [(n — 1)2 + (n — 1)]. Therefore, using formulae (T.11)-(1.17) we obtain
the desired result. [

Theorem 5.6. For a ladder graph L, with n =5,
(i) CM+(L,)="12n-100,
(i) CMo(L,)=432n — 840,
(iii)) CF(L,)=2864n—1612,
(iv) CSO(L,)=50.9116n —69.4075,
(v) CR(L,)=0.25n+0.1048,
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(vi) CHM (L) =1728n —3292,
(vii) CHM (L ,) = 62208n — 162808.

Table 5. Edge partition of the ladder graph based on closed neighborhood degree

(dr,[u),dz, [v]), where uv € E(L,) | (7,7) | (7,11) | (11,11) | (11,12) | (12,12)
Number of edges 2 4 2 4 (Bn-14)

Proof. The ladder graph [6] has 2n vertices and n + 2(n — 1) edges. For n = 5, the closed
neighborhood degree of both end vertices is 7, the closed neighborhood degree of vertices which
is adjacent to end vertex is 11 and the closed neighborhood degree of remaining vertices is 12.
Therefore, we get the edge partition based on the closed neighborhood degree of vertices as
shown in Table 5l Using information in Table [5| to the formulae (1.11)-(1.17), we get the desired
result. O

Theorem 5.7. For a wheel graph W,, with n =4,
(G) CM1(W,) =n(Tn +27),
(ii) CMs(W,) =n(5n2 +54n +81),
(iii) CF(W,)=n(19n2 + 54n + 243),
(iv) CSOW,) =n[v2(n +9)+V17n2 +18n +81],
(v) CR(W,)=3 N
(vi) CHM1(W,) =n(27n? + 126n + 243),
(vi)) CHMo(W,,) = nl(n +9)* + (4n? + 36n)?%].

>

Proof. The wheel graph [6]] has n + 1 vertices and 2n edges. For n =4, the closed neighborhood
degree of each corner vertex is 9+ n and the closed neighborhood degree of the center vertex is
4n. Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 5.8. For a gear graph G, with n =3,
(1) CM1(G,)=n(Tn+37),
(ii) CM(G,) =n(4n? +44n +112),
(i) CF(G,)=n(19n%+42n +275),
(iv) CSO(G,) =nlv/(17n2 +14n +49) +2V/(n2 + 14n + 113)],
W) CR(G) = 57705+ Tary
(vi) CHM(G,) =n(27n? +130n +499),
(vil) CHM5(G,) = n(16n* +224n3 +912n2 + 1792n + 6272).

Proof. The gear graph [1] has 2n+1 vertices and 3n edges. By definition of G,,, the center vertex
is of degree n and outer layer vertex is of degree alternative 3 and 2. The closed neighborhood
degree of the center vertex is 4n, the closed neighborhood degree of each corner vertex adjacent
to the center vertex is n + 7 and the closed neighborhood degree of remaining vertices is 8.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O
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Theorem 5.9. For a friendship graph F, with n =2,
(i) CM1(F,)=n(20n +16),
(i) CMy(F,)=4n(Tn?+16n+4),
(iii) CF(F,)=n(88n?+64n +64),
(iv) CSO(F,)=v2n(2n +4)+4n+/(10n2 + 4n +4),
(v) CR(Fy)= Z(nn+2) + \/n(?:Ln+6)’
(vi) CHM(F,) = n(144n? +192n + 96),
(vii) CHMy(F,) = n(2n +4)* + 2n(12n2 + 24n)2.

Proof. The friendship graph [6] has 2n + 1 vertices and 3n edges. By definition of F,,, 2n vertices
are of degree 2 and the center vertex is of degree 2n. The closed neighborhood degree of the
center vertex is 6n and the closed neighborhood degree of the remaining vertices is 2n + 4.
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 5.10. For a cocktail party graph CP, , with n =2,
(i) CM1(CP, ) =8n(n—1*2n-1),
(il) CM3(CP,, ) =2n(n—1)(4n>—6n +2)?,
(iii) CF(CP, ) =16n(n-1°[4(n -1 +4(n-1)+1],
(iv) CSO(CP,, »)=4V2n(n-1)*2n-1),
(v) CR(CP,,) = 55,
(vi) CHM1(CP,,,)=16n(n-1)3[4(n - 1> +4(n - 1) +1],
(vii) CHM3(CP,, ;) = 2n(n— D[4(n - 1) + 2(n - D]*.

Proof. The cocktail party graph [6] has 2n vertices and 2n(n — 1) edges. For n = 2, the closed
neighborhood degree of the each vertex is 4(n — 1)2 + 2(n — 1). Therefore, using formulae (I.11)-
(1.17) we obtain the desired result. O

Theorem 5.11. For a helm graph H,, with n =3,
({) CM1i(H,)=3n(3n+19),
(i) CMy(H,)=6n(13+n)(n+3),
(iii) CF(H,)=n(29n2+104n +701),
(iv) CSO(H,)=n[vV26n2 +26n + 169+ v2(13 +n)+ v/ (n2 +26n + 194)],

_ 1 L L
(v) CR(H,)=n 5n(i3+n) T 13+n T 5(3+n)

(vi) CHM(H,,) = n(41n2 +296n + 1169),
(vil) CHMo(H,,) = n(13 + n)%(26n2 + 26n + 194).

>

Proof. The helm graph [6]] has 2n + 1 vertices and 3n edges. By definition of H,, the center
vertex is of degree n and outer pendent vertex is of degree 1 and the rest is of degree 4. The closed
neighborhood degree of center vertex is 5n, the closed neighborhood degree of outer pendent

vertex is 5 and the closed neighborhood degree of remaining vertices is 13 + n. Therefore, using
formulae (1.11)-(1.17) we obtain the desired result. O
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6. Closed Neighborhood Topological Indices of Some Nanostructures

Nanostructures are materials with at least one dimension in the nanometer range, often
exhibiting unique physical, chemical, and biological properties due to their small size. These
structures can take various forms, including 2D lattices, nanotubes and nanotorus.

A 2D lattice is a flat, two-dimensional arrangement of atoms or molecules, such as graphene,
that exhibits exceptional properties like high conductivity and strength. Nanotubes often made
of carbon, are cylindrical structures with remarkable mechanical and electrical properties, used
in a wide range of applications from electronics to materials science. Meanwhile, a nanotorus is a
unique toroidal (doughnut-shaped) nanostructure that can possess distinct magnetic, electronic,
and catalytic properties due to its circular geometry. Together, these nanostructures represent a
versatile toolkit for advancing technologies across fields such as electronics, energy, medicine,
and materials science. The nanostructures of TUC4Cg(R)[p,ql, where p and q represents the
number of squares in each row and the number of rows of squares.

8538 3E 55

(a) 2D-lattice TUC4Cg(R)[4,3] (b) Nanotube TUC4Cg(R)[4,3] (¢) Nanotorus TUC4Cg(R)[4,3]

Figure 3

Theorem 6.1. Let X be 2D-lattice of TUC4Cs(R)[p,ql. Then
(i) CM1(X)=92(p +q)+8,
(i1)) CMy(X)=864pqg—462(p +q)+172,
(ii1)) CF(X)=1728pq —884(p +q)+ 8792,
(iv) CSO(X)=101.823pq —36.044(p + q) +5.231,
(v) CR(X)=0.5pq+0.0397(p +q)—0.3772,
(vi) CHM1(X) =3456pq — 1808(p + q) + 656,
(vil) CHM9(X)=124416pq —98142(p + q) + 69068.

Table 6. Edge partition of graph X, when p>1,¢>1

(Sx[ul,SxlvD, | (7,7) | (7,11) (8,11) (11,11) (11,12) (12,12)
where uv € E(X)
Number of edges 4 8 4p+q)-16 | 2p+q) | 4p+q)—16 | 6pg—11(p+q)+20

Proof. The 2D-lattice of TUC4Cg(R)Ip,q] has 4pq vertices and 6pq — p — g edges. Therefore,
edge partition of X, based on closed neighborhood degree of vertices as shown in Table [6]
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O
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Theorem 6.2. Let S(X) be subdivision graph of 2D-lattice of TUC4Cg(R)[p,ql. Then
(1) CM1(S(X))=286(p+q)+204pq,
(i1)) CM2(S(X))=864pq —300(p +q)+ 24,
(iii)) CF(S(X))=1756-590(p +q),
(iv) CSO(S(X))=144.498pq —37.9302(p + q)—0.756,
(v) CR(S(X))=1.4142pq —0.0574(p + q) + 0.0338,
(vi) CHM(S(X))=3468pq —1190(p + q) + 64,
(vil) CHM9(S(X)) =62208pq —28908(p + q) +5976.

Table 7. Edge partition of graph S(X), when p>1,qg>1

(Ssxolul,Ssxylv]), where uv € E(S(X)) | (6,6) 6,7) (7,9) (8,9
Number of edges 8 4p+q)—-8 | p+q)—-8 | 12pq—-10(p+q)+8

Proof. The subdivision graph S(X) has 10pq — p — g vertices and 2(6pq — p — q) edges. Therefore,
edge partition of S(X), based on closed neighborhood degree of vertices as shown in Table
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 6.3. Let L(S(X)) be line graph of subdivision graph of 2D-lattice TUC4Cg(R)[p,ql.
Then
(1) CM1(L(S(X)))=432pq —172(p +q) +38,
(i) CMo(L(S(X)))=2592pq —1274(p + q) + 240,
(iil)) CF(L(S(X)))=5184pq —2476(p + q) + 344,
(iv) CSO(L(S(X))) =305.470pq —140.057(p + q) + 3.144,
(v) CR(L(S(X)))=1.5pq —0.1455(p + q) + 0.120,
(vi) CHM1(L(S(X))) =10368pq —5024(p + q) + 824,
(vil) CHMo(L(S(X))) =373248pq —226074(p + q) + 88592.

Table 8. Edge partition of graph L(S(X)), when p >1,g>1

(Srsxylul, SLsxylvd, | (6,6) | (6,7) (7,7 (7,11) (11,12) (12,12)
where uv € E(L(S(X)))

Number of edges 4 8 |20(p+q)-8|4p+q)—-8|8(p+q)—16|18pqg—19(p +q)+20

Proof. The line graph of subdivision graph L(S(X)) has 2(6pq — p — q) vertices and (18pqg —5p —
5q) edges. Therefore, edge partition of L(S(X)), based on closed neighborhood degree of vertices
as shown in Table 8 Therefore, using formulae (1.11)-(1.17) we obtain the desired result. [

Theorem 6.4. Let Y be TUC4Cg(R)[p,ql nanotubes. Then
(1) CM1(Y)=4(36pqg—10p —3q —11),
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(i) CMo(Y)=864pq —326p — 144q — 450,
(iii) CF(Y)=1728pq —632p —252q — 868,
(iv) CSO(Y) = 101.823pq — 27.920p — 7.882g — 30.472,
(v) CR(Y)=0.083pq +0.4857p +0.0519¢ +0.2311,
(vi) CHM,(Y) = 3456pq — 1284p — 2268q — 1768,
(vii) CHMy(Y) = 124416pq — 65534 p — 36288¢ — 93090.

Table 9. Edge partition of graph Y, when p>1,¢>1

(Sylul,Sylv]), (8,8) | (8,11) | (11,11) | (8,12) | (11,12) | (9,12) (12,12)
where uv e E(Y)

Number of edges 4 20p+2) | 2(p-1) 4 20p+2) | 4g-2) | 6pg—-Tp—4g—6

Proof. The TUC4Cg(R)Ip,q] nanotube has 4pq vertices and 6pq — p edges. Therefore, edge
partition of S(Y'), based on closed neighborhood degree of vertices as shown in Table[9] Therefore,
using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 6.5. Let S(Y) be subdivision graph of TUC4Cg(R)[p,q] nanotubes. Then
(1) CM1(S(Y))=204pq —54p -1q,
(i1)) CMy(S(Y)) =864pq —300p —59q + 4,
(ii1)) CF(S(Y))=1740pq —590p —103q,
(iv) CSO(S(Y))=144.499pq —37.930p —4.567q —0.181,
(v) CR(S(Y))=1.414pq —0.0574p +0.0627q +0.0023,
(vi) CHM(S(Y))=3468pq —1190p —221q + 8,
(vil) CHM9(S(Y)) =62208pq — 28908p — 7255q + 960.

Table 10. Edge partition of graph S(Y), when p>1, ¢ >1

(Ss)lul,Ssx)lv]), where uv e E(S(Y)) | (5,9) | (6,7) | (7,7) | (7,8) | (7,9) (8,9
Number of edges q 4p 2 2g—2 | 4p—2 | 12pq—10p —3q + 2

Proof. The subdivision graph S(Y) has 10pqg — p vertices and 2(6pq — p) edges. Therefore,
edge partition of S(Y'), based on closed neighborhood degree of vertices as shown in Table
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

Theorem 6.6. Let L(S(Y)) be line graph of subdivision graph of nanotube. Then
(1) CM(L(S(Y)))=432pq—168p —24q +8,
(i) CMo(L(S(Y))) =2592pq —1226p —274q + 96,
(iii) CF(L(S(Y)))=5184pq —2384p — 528q + 184,
(iv) CSO(L(S(Y))) =305.470pq —117.490p — 16.627q + 5.534,
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(v) CR(L(S(Y)))=0.4330pg —0.015p + 0.036¢ — 0.0086,
(vi) CHM(L(S(Y))) = 10368pq — 4836p — 10764 + 376,
(vii) CHM(L(S(Y))) = 373248pq — 21282p — 691784 + 26496.

Table 11. Edge partition of graph L(S(Y)), when p>1, ¢>1

Srsoylul,Srisaylvd, | (7,7) | (7,11) | (9,11) | (11,11) (11,12) (12,12)
where uv € E(L(S(Y)))

Number of edges 2p 4p 4q 2q 4dp+4q9—-8 | 18pqg—53p+2q)+8

Proof. The line graph of subdivision graph L(S(Y)) has 2(6pqg — p) vertices and (18pq —5p)
edges. Therefore, edge partition of L(S(Y)), based on closed neighborhood degree of vertices as
shown in Table[11] Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O
Theorem 6.7. Let Z be TUC4Cs(R)[p,ql nanotorus. Then
(1) CM(Z)=144pq - 12(p +q),
(i) CMo(Z)=864pq—144(p +q) + 36,
(i) CF(Z)=1728pq —252(p + q),
(iv) CSO(Z)=101.823pq —7.882(p + q)— 1.206,
(v) CR(Z)=0.5pqg+0.0516(p +q)+0.7777,
(vi) CHM(Z)=3456pq —540(p + q) + 72,
(vii) CHM9(Z) =124416pq —36288(p + q) + 15876.

Table 12. Edge partition of graph Z, when p>1,g>1

(Szlul,Sz[v]), where uv e E(Z) | (9,9) 9,12) (12,12)
Number of edges 4 | 4p+q) -8 | 6pg-4p+q)+4

Proof. The TUC4Cg(R)[p,q] nanotorus has 4pqg vertices and 6pg edges. Therefore, edge

partition of Z, based on closed neighborhood degree of vertices as shown in Table Therefore,
using formulae (1.11)-(1.17) we obtain the desired result. d

Theorem 6.8. Let S(Z) be subdivision graph of TUC4Cg(R)Ip,q]l nanotorus. Then
(i) CM(S(Z))=204pq—T(p +q),
(i) CM2(S(Z))=864pq —59(p +q),
(ili) CF(S(Z))=1740pq —103(p +q),
(iv) CSO(S(Z))=144.499pq —4.5689(p + q),
(v) CR(S(Z))=1.4142pq +0.0627(p + q),
(vi) CHM(S(Z))=3468pq —221(p +q),
(vil) CHM9(S(Z)) =62208pq — 7255(p +q).
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Table 13. Edge partition of graph S(Z), when p>1,¢>1

(Ssi)lul,Ssz)lv]), where uv € E(S(Z)) | (5,9) (7,8) (8,9)
Number of edges p+q | 2(p+q) | 12pq-3(p+q)

Proof. The subdivision graph S(Z) has 10pq vertices and 12pq edges. Therefore, edge partition
of S(Z), based on closed neighborhood degree of vertices as shown in Table Therefore, using
formulae (1.11)-(1.17) we obtain the desired result. d

Theorem 6.9. Let L(S(Z)) be line graph of subdivision graph of nanotorus. Then
(i) CM1(L(S(Z))) =432pq —12(p +q),
(i) CMo(L(S(Z))) =2592pq —144(p +q),
(ii1)) CF(L(S(Z)))=5184pq +45504(p + q),
(iv) CSO(L(S(Z2))) =305.4701pq —7.8822(p + q),
(v) CR(L(S(Z)))=1.5pq +0.0516(p + q),
(vi) CHM(L(S(Z)))=10368pq —540(p + q),
(viil) CHM9(L(S(2))) =373248pq —36288(p + q).

Table 14. Edge partition of graph L(S(Z)), when p>1, ¢ > 1

(Sris@zylul, Sriszylv]), where uv € E(L(S(Z))) | (9,12) (12,12)
Number of edges 4p+q) | 18pg—4(p+q)

Proof. The line graph of subdivision graph L(S(Z)) has 12pq vertices and 18pgq edges. Therefore,
edge partition of S(X), based on closed neighborhood degree of vertices as shown in Table
Therefore, using formulae (1.11)-(1.17) we obtain the desired result. O

7. Conclusion

In this research, we introduced seven closed neighborhood topological indices and we examined
its QSPR properties such as entropy and acentric factor to octane isomer. These indices highly
correlates with the acentric factor of octane isomers. Later we obtain explicit formulae of these
indices to nanostructures. The obtained results shed light on new aspects in the discipline of
structural chemistry and also showcase practical relevance in forecasting the characteristics of
topological indices at the preliminary analysis.
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