Journal of Informatics and Mathematical Sciences

Vol. 17, No. 2, pp. 213-226, 2025

ISSN 0975-5748 (online); 0974-875X (print)

Published by RGN Publications

DOI: 10.26713/jims.v17i2.3169

Research Article

Some Neutrosophic Ideals of BF-algebras

A. Ibrahim* and B. Kavitha

P.G. and Research Department of Mathematics, H.H. The Rajah's College (Affiliated to Bharathidasan

University), Pudukkottai, Trichirappalli, Tamilnadu, India

*Corresponding author: dribra@hhrc.ac.in

Received: March 1, 2025 Revised: May 6, 2025

Accepted: May 20, 2025 Published: June 30, 2025

Communicated by: William Joseph

Abstract. In this paper, we introduce the notions of neutrosophic ideal and neutrosophic subalgebra of BF-algebra with suitable illustrations. Further, we discuss homomorphism and epimorphism mappings of neutrosophic ideals. Also, we introduce the definitions of a neutrosophic implicative ideal and a neutrosophic ideal of BF-algebras and investigate some of their properties.

Keywords. BF-algebra, Ideal, Neutrosophic set, Neutrosophic implicative ideal, Neutrosophic p-ideal

Mathematics Subject Classification (2020). 06F35, 03B47, 03B52, 03E70

Copyright © 2025 A. Ibrahim and B. Kavitha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The concept of BF-algebra was first developed by Jun *et al*. [8] in 1998, which is a generalisation of BCK/BCI/B algebras. Imai and Iséki [6] presented the BCK and BCI classes of abstract algebras in 1966. The concept of B-algebra, a generalization of BCK-algebras, was first proposed by Neggers *et al*. [11] in 2001. In 2010, fuzzy ideals, fuzzy implicative ideals, and fuzzy ideals in BF-algebra were introduced by Satyanarayana *et al*. [17]. Florentine [4] introduced the definition of neutrosophic set. Ibrahim and Kavitha [5] looked into some properties and presented the notation of a neutrosophic ideal of BN-algebra.

In this work, we first introduce the notion of the neutrosophic ideal of BF-algebras and then look into a number of fundamental properties that are connected to it.

2. Preliminaries

In order to better understand the primary findings, we go over the basic definitions of BF-algebra, ideals, and ideal characteristics in this section. We also go over the concepts of neutrosophic sets and neutrosophic ideals of BF-algebra.

Theorem 2.1 ([17]). A non-empty set X with a constant 0 and a binary operation '*' that satisfies the following axioms is called a BF-algebra:

if for all $\alpha_1, \beta_1 \in X$,

- (i) $\alpha_1 * \alpha_1 = 0$,
- (ii) $\alpha_1 * 0 = \alpha_1$,
- (iii) $0 * (\alpha_1 * \beta_1) = \beta_1 * \alpha_1$, for all $\alpha_1, \beta_1 \in X$.

Note. The following is true for any BF-algebra X, for all $\alpha_1, \beta_1 \in X$,

- (i) If $0 * \alpha_1 = 0 * \beta_1$, then $\alpha_1 = \beta_1$,
- (ii) $0 * (\alpha_1 * \beta_1) = (0 * \alpha_1) * (0 * \beta_1)$.

Example 2.2 ([17]). Let R be the set of real numbers and let X = (R, *, 0) be the algebra with the operation '*' defined by

$$\alpha_1 * \beta_1 =
\begin{cases}
\alpha_1, & \text{if } \beta_1 = 0, \\
\beta_1, & \text{if } \alpha_1 = 0, \\
0, & \text{otherwise.}
\end{cases}$$

Then, X is BF-algebra.

Definition 2.3 ([17]). A non-empty subset S of a BF-algebra X is called a subalgebra of X if $\alpha_1 * \beta_1 \in X$, for all $\alpha_1, \beta_1 \in S$.

Definition 2.4 ([17]). A non-empty subset A of X is called ideal of X, if it satisfied the following: for all $\alpha_1, \beta_1 \in X$,

- (i) $0 \in A$,
- (ii) $\alpha_1 * \beta_1 \in A$ and $\beta_1 \in A$ then $\alpha_1 \in A$.

Definition 2.5 ([17]). A subset that is not empty an implicative ideal is one that satisfies the following:

for every $\alpha_1, \beta_1, \gamma_1 \in X$,

- (i) $0 \in A$,
- (ii) $((\alpha_1 * \beta_1) * \gamma_1)$ and $\beta_1 * \gamma_1 \in A$ implies $\alpha_1 * \gamma_1 \in A$.

Definition 2.6 ([17]). A non-empty subset A in a BF-algebra X is called a p-ideal of X, if it satisfied the following:

for all $\alpha_1, \beta_1, \gamma_1 \in X$,

- (i) $0 \in A$,
- (ii) $(\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1) \in A$ and $\beta_1 \in A$ implies $\alpha_1 \in A$.

Definition 2.7 ([17]). An BF-algebra X is referred to as the quasi-right alternative BF-algebra, provided that it met the requirement that, for any $\alpha_1, \beta_1 \in X$, $\alpha_1 * (\beta_1 * \beta_1) = (\alpha_1 * \beta_1) * \beta_1$.

Definition 2.8 ([17]). An BF-algebra If, for every $\alpha_1, \beta_1, \gamma_1$ in X, it satisfies the condition $(\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1) = (\alpha_1 * \beta_1) * \gamma_1$, then X is a positive implicative BF-algebra.

Definition 2.9 ([17]). A BF-algebra's non-empty subset A. If X met the following conditions, it is referred to be a p-ideal of X, for all $\alpha_1, \beta_1, \gamma_1 \in X$,

- (i) $0 \in A$,
- (ii) $(\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1) \in A$ and $\beta_1 \in A$ implies $\alpha_1 \in A$.

Definition 2.10 ([17]). Given two BF-algebras (X, *, 0) and (X', *', 0), let f be a function from X into X'. The fuzzy set in X defined by if v is a fuzzy set in f is the preimage of v under f in X', for all $\alpha_1 \in X$, $f^{-1}(v)(\alpha_1) = v(f(\alpha_1))$.

Definition 2.11 ([17]). Let (X, *, 0) and (X', *', 0') be two BF-algebras and let f is a mapping from X into X' is called homomorphism if $f(\alpha_1 * \beta_1) = f(\alpha_1) *' f(\beta_1)$, for all $\alpha_1, \beta_1 \in X$.

Note. A onto homomorphism is called epimorphism.

Definition 2.12 ([4]). Let U be the discourse universe. A neutrosophic set N of U is characterized by a truth membership function T_N , an indeterminacy membership function I_N , and a falsity membership function F_N , where T_N , I_N , and F_N are real standard elements of [0,1]. It can be written as $N = \{(\alpha_1, T_N(\alpha_1), I_N(\alpha_1), F_N(\alpha_1))/\lambda \in U\}$, $T_N, I_N, F_N \in]0,1[$. There is no restriction on the sum of $T_N(\alpha_1)$, $I_N(\alpha_1)$ and $F_N(\alpha_1)$, and thus,

$$0^- \le T_N(\alpha_1) + I_N(\alpha_1) + F_N(\alpha_1) \le 3^+$$
.

Definition 2.13 ([5]). A neutrosophic set $N = \{T_N, I_N, F_N\}$ of BN-algebra (A, *, 0), if N is called an neutrosophic ideal of BN-algebra A, if it satisfied the following: for all $\alpha_1, \beta_1 \in A$,

- (i) $T_N(0) \ge T_N(\alpha_1), I_N(0) \ge I_N(\alpha_1), F_N(0) \le F_N(\alpha_1),$
- (ii) $T_N(\alpha_1) \ge \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}; I_N(\beta_1) \ge \min\{I_N(\alpha_1 * \beta_1), I_N(\beta_1)\}; F_N(\alpha_1) \le \max\{F_N(\alpha_1 * \beta_1), F_N(\beta_1)\}.$

3. Main Results

The main results of the research are presented in this section beginning with an explanation of neutrosophic ideals of BF-algebra with an example. In addition, it contains several basic properties which are related to neutrosophic ideal in BF-algebra.

Definition 3.1. Let (X, *, 0) be a BF-algebra, and let N be a non-empty neutrosophic set of a BF-algebra X is called neutrosophic ideal of X, if it satisfies the following: for all $\alpha_1, \beta_1 \in N$,

- (i) $T_N(0) = T_N(\alpha_1)$; $I_N(0) = I_N(\alpha_1)$; $F_N(0) = F_N(\alpha_1)$,
- (ii) $T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}; I_N(\alpha_1) = \min\{I_N(\alpha_1 * \beta_1), I_N(\beta_1)\}; F_N(\alpha_1) \le \max\{F_N(\alpha_1 * \beta_1), F_N(\beta_1)\}.$

Example 3.2. Consider a set $A = \{0, \alpha_1, 1\}$. Define a binary operation '*' on N given by Table 3.1, and neutrosophic set by Table 3.2 as shown below:

Table 3.1. '*' Operation

*	0	α_1	1
0	0	α_1	1
α_1	α_1	0	1
1	1	1	0

Table 3.2. Neutrosophic set

N A	0	α_1	1
T_N	0.9	0.7	0.7
I_N	0.8	0.6	0.6
F_N	0.3	0.2	0.2

It is easily verified that N is a neutrosophic ideal of X, and that it satisfies the conditions of Definition 3.1.

Definition 3.3. Let (X, *, 0) be a BF-algebra, and let be N a non-empty neutrosophic subset N of X, N is called neutrosophic sub-algebra of X, if it satisfies the following: for all $\alpha_1, \beta_1 \in X$,

- (i) $T_N(\alpha_1 * \beta_1) \ge \min\{T_N(\alpha_1), T_N(\beta_1)\};$
- (ii) $I_N(\alpha_1 * \beta_1) = \min\{I_N(\alpha_1), I_N(\beta_1)\};$
- (iii) $F_N(\alpha_1 * \beta_1) = \max\{F_N(\alpha_1), F_N(\beta_1)\}.$

Definition 3.4. Consider a set $A = \{0, \alpha_1, 1\}$ be a neutrosophic subset of X. Define a binary operation '*' on N given by Table 3.3, and neutrosophic set by Table 3.4 as shown below:

Table 3.3. '*' Operation

*	0	α_1	1
0	0	α_1	1
α_1	α_1	0	1
1	1	1	0

Table 3.4. Neutrosophic set

N A	0	α_1	1
T_N	0.7	0.5	0.5
I_N	0.6	0.4	0.4
F_N	0.2	0.1	0.1

It is easily verified that N is neutrosophic sub-algebra of X, and that it satisfies the conditions of Definition 3.3.

Theorem 3.5. If a neutrosophic set N in a BF-algebra X is a neutrosophic ideal, then $(\alpha_1 * \beta_1) * \gamma_1 = 0$, for all $\alpha_1, \beta_1, \gamma_1 \in N$ implies

- (i) $T_N(\alpha_1) \ge \min\{T_N(\beta_1), T_N(\gamma_1)\};$
- (ii) $I_N(\alpha_1) = \min\{I_N(\beta_1), I_N(\gamma_1)\};$
- (iii) $F_N(\alpha_1) \le \max\{F_N(\beta_1), F_N(\gamma_1)\}.$

Proof. Let N be a neutrosophic ideal of X.

Then

$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1)\}, \text{ for all } \alpha_1, \beta_1, \gamma_1 \in X,$$

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. 213–226, 2025

$$\begin{split} &= \min \{ \min \{ T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1) \}, T_N(\beta_1) \} \\ &= \min \{ \min \{ T_N(0), T_N(\gamma_1) \}, T_N(\beta_1) \} \\ &= \min \{ T_N(\gamma_1), T_N(\beta_1) \}. \end{split}$$

Thus,

$$T_N(\alpha_1) = \min\{T_N(\beta_1), T_N(\gamma_1)\}, \text{ for all } \alpha_1, \beta_1, \gamma_1 \in X.$$

Similarly, we can prove for $I_N(\alpha_1)$. Next,

$$\begin{split} F_N(\alpha_1) &= \max\{F_N((\alpha_1 * \beta_1) * \gamma_1), F_N(\beta_1)\}, \quad \text{for all } \alpha_1, \beta_1, \gamma_1 \in X, \\ &\leq \max\{\max\{F_N((\alpha_1 * \beta_1) * \gamma_1), F_N(\beta_1)\}, F_N(\beta_1)\} \\ &= \max\{F_N(0), F_N(\gamma_1)\}, F_N(\beta_1)\} \\ &= \max\{F_N(\gamma_1), F_N(\beta_1)\}. \end{split}$$

Thus,

$$F_N(\alpha_1) = \max\{F_N(\beta_1), F_N(z)\}, \quad \text{for all } \alpha_1, \beta_1, \gamma_1 \in X.$$

Theorem 3.6. A subset N of BF-algebra that is neutrosophic if and only if X is a neutrosophic ideal of X, then for every $\tau \in [0,1]$, $N_{\tau} = \{\alpha_1/\alpha_1 \in X, T_N(\alpha_1) = \tau\}$ is X's ideal, when $N_{\tau} \neq \emptyset$.

Proof. Let N be a neutrosophic subset of a BF-algebra X.

If *N* is a neutrosophic ideal of *X*, and $y \in N_{\tau}$.

Then, from Definition 3.1,

$$T_N(0) = T_N(\alpha_1)$$
, for all $\alpha_1 \in X$
= τ .

Therefore, $0 \in N_{\tau}$.

Let $\alpha_1 * \beta_1 \in N_\tau$, $\beta_1 \in N_\tau$. Then

$$T_N(\alpha_1 * \beta_1) = \lambda$$
 and $T_N(\beta_1) = \tau$, for all $\alpha_1, \beta_1 \in X$.

Thus,

$$T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}$$

Therefore, $x \in N_{\tau}$. Similarly, we can prove for I_N and F_N .

Hence, N_{τ} is X's ideal.

Conversely, if for every $\tau \in [0,1]$, $N_{\tau} = \{\alpha_1/\alpha_1 \in X, T_N(\alpha_1) = \tau\}$ is X's ideal, when $N_{\tau} \neq \emptyset$.

To prove: A neutrosophic subset *N* of BF-algebra *X* is neutrosophic ideal of *X*.

It is enough to prove the following:

for all $\alpha_1, \beta_1 \in X$,

- (i) $T_N(0) \ge T_N(\alpha_1)$, and
- (ii) $T_N(\alpha_1) \ge \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}.$

If $T_N(0) = T_N(\alpha_1)$, for all $\alpha_1 \in X$ is not true, that implies

$$T_N(0) < T_N(\alpha_1)$$
, for some $\alpha_1 \in X$.

Then, there exists $\alpha_{10} \in X$ such that $T_N(0) < T_N(\alpha_{10})$.

Let

$$\begin{split} \tau_0 &= \frac{T_N(\alpha_{10}) + T_N(0)}{2} \\ T_N(0) &< \tau_0, \quad 0 = \tau_0 < T_N(\alpha_{10}) = 1 \\ T_N(\alpha_{10}) &> \tau_0. \end{split}$$

Then,

$$\alpha_{10} \in N_{\tau_0}$$
 and $N_{\tau_0} \neq \emptyset$.

But, N_{τ_0} is an ideal of X, so $0 \in N_{\tau_0}$.

Therefore, from the definition of N_{τ_0} , we have

$$T_N(0) = \tau_0$$

which is contradiction to $T_N(0) < \tau_0$.

Thus,

$$T_N(0) = T_N(\alpha_1)$$
, for all $\alpha_1 \in X$.

If $T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}\$ is not true.

Then, there exists $\alpha_{10}, \beta_{10} \in X$ such that

$$T_N(\alpha_{10}) < \min\{T_N(\alpha_{10} * \beta_{10}), T_N(\beta_{10})\}.$$

Let $\tau_1 \in [0,1]$ such that

$$\tau_1 = \frac{T_N(\alpha_{10}) + \min\{T_N(\alpha_{10} * \beta_{10}), T_N(\beta_{10})\}}{2}.$$

Then

$$T_N(\alpha_{10}) < \tau_1$$
, $0 = \tau_1 < \min\{T_N(\alpha_{10} * \beta_{10}), T_N(\beta_{10})\} = 1$,

- $\Rightarrow \min\{T_N(\alpha_{10} * \beta_{10}), T_N(\beta_{10})\} > \tau_1$
- \Rightarrow $T_N(\alpha_{10} * \beta_{10}) > \tau_1$ and $T_N(\beta_{10}) > \tau_1$
- \Rightarrow $\alpha_{10} * \beta_{10} \in N_{\tau_1}$ and $\beta_{10} \in N_{\tau_1}$
- \Rightarrow $N_{\lambda_1} \neq \emptyset$ and $\alpha_{10} \in N_{\tau_1}$ (since N_{τ_1} is an ideal)

Thus, we have

$$T_N(\alpha_{10}) > \tau_1$$

which is contradiction to $T_N(\alpha_{10}) < \tau_1$.

Hence,

$$T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}, \text{ for all } \alpha_1, \beta_1 \in X.$$

Similarly, we can prove for I_N and F_N . Therefore, N is an neutrosophic ideal of X.

Lemma 3.7. If N is a neutrosophic BF-subalgebra of X, then $T_N(0) \ge T_N(\alpha_1)$, $I_N(0) \ge I_N(\alpha_1)$, and $F_N(0) \le F_N(\alpha_1)$, for all $\alpha_1 \in X$.

Proof. Proof of the lemma is straight forward.

Theorem 3.8. A neutrosophic subset N of a quasi-right alternative BF-algebra X is neutrosophic sub-algebra if and only if N is a neutrosophic ideal.

Proof. Let N be neutrosophic sub-algebra of quasi-right alternative BF-algebra X. Then from Lemma 3.7, we have

$$T_N(0) = T_N(\alpha_1)$$
, for all $\alpha_1 \in X$.

For all $\alpha_1 \in X$ and

$$egin{aligned} T_N(lpha_1) &= T_N(lpha_1*0) \ &= T_N(lpha_1*(eta_1*eta_1)) \ &= T_N((lpha_1*eta_1)*eta_1), \quad lpha_1
eq eta_1 \end{aligned}$$

implies

$$T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\beta_1)\}, \quad \alpha_1 \neq \beta_1, \text{ for all } \alpha_1, \beta_1 \in X.$$

If $\alpha_1 = \beta_1$,

$$T_N(\alpha_1) = \min\{T_N(\alpha_1 * \alpha_1), T_N(\alpha_1)\} = \min\{T_N(0), T_N(\alpha_1)\} = T_N(\alpha_1).$$

Therefore, we have

$$T_N(\alpha_1) = \min\{T_N(\alpha_1 * \beta_1), T_N(\alpha_1)\}, \text{ for all } \alpha_1, \beta_1 \in X.$$

Similarly, we can prove for I_N and F_N . Thus, N is a neutrosophic ideal of X.

Conversely, if N is neutrosophic ideal, then

$$\begin{split} T_N(\alpha_1 * \beta_1) &= \min\{T_N(\alpha_1 * \beta_1) * \beta_1, T_N(\beta_1)\}, & \text{ for all } \alpha_1, \beta_1 \in X \\ &= \min\{T_N(\alpha_1 * (\beta_1 * \beta_1), T_N(\beta_1)\}, & \alpha_1 \neq \beta_1 \\ &= \min\{T_N(\alpha_1), T_N(\beta_1)\}, & \alpha_1 \neq \beta_1 \\ &= \min\{T_N(\alpha_1), T_N(\beta_1)\}, & \text{ when } \alpha_1 \neq \beta_1. \end{split}$$

If $\alpha_1 = \beta_1$,

$$T_N(\alpha_1 * \beta_1) = T_N(0) = T_N(\alpha_1) = \min\{T_N(\alpha_1), T_N(\alpha_1)\}.$$

Therefore, we have

$$T_N(\alpha_1 * \beta_1) = \min\{T_N(\alpha_1), T_N(\beta_1)\}, \text{ for all } \alpha_1, \beta_1 \in X.$$

Similarly, we can prove for I_N and F_N . Hence, N is a neutrosophic sub-algebra of X.

Next, we discuss homomorphism and epimorphism mappings on neutrosophic ideal.

Theorem 3.9. For BF-algebra (X,*,0) let f be a homomorphic mapping onto BF-algebra $(X_1,*',0')$, when N_1 is a neutrosophic ideal of X_1 , then X is a neutrosophic ideal of N_1 's homomorphic preimage N under f.

Proof. It is easy to see that

$$T_N(0) = T_N(\alpha_1)$$
, for all $\alpha_1 \in X$.

For all $\alpha_1, \beta_1 \in X$,

$$\begin{split} T_N(\alpha_1) &= T_{N_1}(f(\alpha_1)) \\ &= \min\{T_{N_1}(f(\alpha_1 *' \beta_1))\}, T_{N_1}(f(\beta_1))\} \\ &= \min\{T_N(\alpha_1 *' \beta_1), T_N(\beta_1)\}, \quad \text{for all } \alpha_1, \beta_1 \in X. \end{split}$$

Similarly, we can prove for I_N and F_N . Hence, N is neutrosophic ideal of X.

Theorem 3.10. For BF-algebras, $f: X \to X_1$ be an epimorphism. This means that $f^{-1}(N_1)$ is a neutrosophic ideal of X if N_1 is a neutrosophic ideal in X_1 .

Proof. Let $f: X \to X_1$ be a BF's epimorphism and let N_1 be a neutrosophic ideal in X_1 . It is easy to see that

$$f^{-1}\{T_{N_1}(0)\} \ge f^{-1}\{T_{N_1}(\alpha_1)\}, \text{ for all } \alpha_1 \in X.$$

For all $x, y \in X$,

$$\begin{split} f^{-1}\{T_{N_1}(\alpha_1)\} &= T_{N_1}\{f(\alpha_1)\} \\ &= \min\{T_{N_1}(f(\alpha_1 * \beta_1), T_{N_1}(f(\beta_1)))\} \\ &= \min(f^{-1}\{T_{N_1}(\alpha_1 * \beta_1)\}, f^{-1}\{T_{N_1}(\beta_1)\}). \end{split}$$

Similarly, we can prove for I_N and F_N . Thus, $f^{-1}\{T_{N_1}\}$ is a neutrosophic ideal in X.

Definition 3.11. Let X be a BF-algebra, a neutrosophic subset N of X is called a neutrosophic implicative ideal of X, if it satisfies the following: for all $\alpha_1, \beta_1, \gamma_1 \in X$,

(i)
$$T_N(0) = T_N(\alpha_1)$$
; $I_N(0) = I_N(\alpha_1)$; $F_N(0) = F_N(\alpha_1)$,

(ii)
$$T_N(\alpha_1 * \gamma_1) = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\};$$

 $I_N(\alpha_1 * \gamma_1) = \min\{I_N((\alpha_1 * \beta_1) * \gamma_1), I_N(\beta_1 * \gamma_1);$
 $F_N(\alpha_1 * \gamma_1) \leq \max\{F_N((\alpha_1 * \beta_1) * \gamma_1), F_N(\beta_1 * \gamma_1)\}.$

Example 3.12. Consider a set $A = \{0, \alpha_1, 1\}$ be a neutrosophic subset of X. Define a binary operation '* on N given by Table 3.5, and neutrosophic set by Table 3.6 as shown below:

Table 3.5. '*' Operation

*	0	α_1	1
0	0	α_1	1
α_1	α_1	. 0	1
1	1	1	0

Table 3.6. Neutrosophic set

N A	0	α_1	1
T_N	0.9	0.7	0.7
I_N	0.8	0.6	0.6
F_N	0.3	0.2	0.2

It is easily verified that N is a neutrosophic implicative ideal of X, and that it satisfies the conditions of Definition 3.11.

Definition 3.13. A neutrosophic positive implicative ideal of X is defined as a neutrosophic subset N of X that meets the following:

For all $\alpha_1, \beta_1, \gamma_1 \in X$,

(i)
$$T_N(0) = T_N(\alpha_1)$$
; $I_N(0) = I_N(\alpha_1)$; $F_N(0) = F_N(\alpha_1)$,

(ii)
$$T_N(\alpha_1 * \gamma_1) = \min\{T_N(\alpha_1 * \beta_1) * \gamma_1\}, T_N(\beta_1 * \gamma_1)\};$$

 $I_N(\alpha_1 * \gamma_1) = \min\{I_N(\alpha_1 * \beta_1) * \gamma_1\}, I_N(\beta_1 * \gamma_1)\};$
 $F_N(\alpha_1 * \gamma_1) \leq \max\{F_N(\alpha_1 * \beta_1) * \gamma_1\}, F_N(\beta_1 * \gamma_1)\}.$

Example 3.14. Consider a set $A = \{0, \alpha_1, 1\}$ be a neutrosophic subset of X. Define a binary operation '*' on N given by Table 3.7, and neutrosophic set by Table 3.8 as shown below:

Table 3.7. '*' Operation

*	0	α_1	1
0	0	α_1	1
α_1	α_1	0	1
1	1	1	0

Table 3.8. Neutrosophic set

N A	0	α_1	1
T_N	0.8	0.8	0.8
I_N	0.6	0.6	0.6
F_N	0.2	0.2	0.2

It is easily verified that N is neutrosophic positive implicative ideal of X, and that it satisfies the conditions of Definition 3.13.

Theorem 3.15. The neutrosophic ideal N of BF-algebra X must be a neutrosophic implicative ideal. Alternatively, the neutrosophic implicative ideal must be the BF-algebra X positive implicative ideal.

Proof. Let the implicative ideal *N* be neutrosophic.

Then from Definition 3.11, we have

(i)
$$T_N(0) = T_N(\alpha_1)$$
,

(ii)
$$T_N(\alpha_1 * \gamma_1) = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\}$$
, for all $\alpha_1, \beta_1, \gamma_1 \in X$.

Put $\gamma_1 = 0$ in (ii), we get

$$T_N(\alpha_1 * 0) = \min\{T_N((\alpha_1 * \beta_1) * 0), T_N(\beta_1 * 0)\} \text{ (since } \alpha_1 * 0 = \alpha_1)$$
$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \beta_1)), T_N(\beta_1)\}.$$

Similarly, we can prove for I_N and F_N .

Hence, N is a neutrosophic ideal.

On the other hand, if X is positive implicative and N is a neutrosophic ideal. Then,

$$(\alpha_1 * z) * (\beta_1 * \gamma_1) = (\alpha_1 * \beta_1) * \gamma_1, \text{ for all } \alpha_1, \beta_1, \gamma_1 \in X,$$

 $T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)) = T_N((\alpha_1 * \beta_1) * \gamma_1).$

Since, N is neutrosophic ideal,

$$T_N(0) = T_N(\alpha_1)$$
, for all $\alpha_1 \in X$

and

$$T_{N}(\alpha_{1} * \gamma_{1}) = T_{N}\{(\alpha_{1} * \gamma_{1}) * (\beta_{1} * \gamma_{1})\}, T_{N}(\beta_{1} * \gamma_{1})\},$$

$$T_{N}(\alpha_{1} * \gamma_{1}) = \min\{T_{N}((\alpha_{1} * \beta_{1}) * \gamma_{1})\}, T_{N}(\beta_{1} * \gamma_{1})\} \text{ (by Definition 2.8)}$$

Similarly, we can prove for I_N and F_N .

Hence, N is a neutrosophic implicative ideal.

Theorem 3.16. Let N be a neutrosophic set in X defined for $\alpha_1 \in X$ by and let I be a subset of BF-algebra,

$$T_N(\alpha_1) = egin{cases} \mu_0, & \textit{if } \alpha_1 \in I, \\ \delta_0, & \textit{otherwise}, \end{cases}$$

where $0 = \delta_0 < \mu_0$ in [0,1], if and only if I is an implicative ideal of X, then N is a neutrosophic implicative ideal of X.

Proof. Let N be neutrosophic implicative ideal of X.

Let $\alpha_1 \in I$, since

$$T_N(0) = T_N(\alpha_1) = \mu_0$$

$$\Rightarrow T_N(0) = \mu_0$$

$$\Rightarrow$$
 0 \in *I*

Let $(\alpha_1 * \beta_1) * \gamma_1 \in I$, for all $\alpha_1, \beta_1, \gamma_1 \in X$.

Since

$$T_N(\alpha_1 * \gamma_1) = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\}$$

= $\min\{\mu_0, \mu_0\}$
= μ_0

$$\Rightarrow$$
 $T_N(\alpha_1 * \gamma_1) = \mu_0$,

therefore, $\alpha_1 * \gamma_1 \in I$.

I is therefore an implicative ideal of X. On the other hand, suppose that I is X's implicative ideal.

To prove: N is neutrosophic implicative ideal of X.

Let $\alpha_1 \in X$, if $\alpha_1 \in I \Rightarrow T_N(\alpha_1) = \mu_0$ since $0 \in I$, we have $T_N(0) = \mu_0$, therefore $T_N(0) = T_N(\alpha_1)$.

If
$$\alpha_1 \notin I \Rightarrow T_N(x) = \delta_0$$
 since $T_N(0) = \mu_0 > \delta_0 = T_N(\alpha_1)$, therefore $T_N(0) > T_N(\alpha_1)$.

Hence, $T_N(0) = T_N(\alpha_1)$, for all $\alpha_1 \in X$.

Let $(\alpha_1 * \beta_1) * \gamma_1 \in X$ and $\beta_1 * \gamma_1 \in X$, for all $\alpha_1, \beta_1, \gamma_1 \in X$.

If $(\alpha_1 * \beta_1) * \gamma_1 \in I$ and $\beta_1 * \gamma_1 \in I$ implies $(\beta_1 * \gamma_1) \in X$ (since *I* is implicative ideal).

Therefore,

$$T_N(\alpha_1 * \gamma_1) = \mu_0 = \min\{\mu_0, \mu_0\} = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\}.$$

Let $(\alpha_1 * \beta_1) * \gamma_1 \notin I$ or $\beta_1 * \gamma_1 \notin I$, then

$$\min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\} = \delta_0 = T_N(\alpha_1 * \gamma_1).$$

Therefore,

$$T_N(\alpha_1 * \gamma_1) = \min\{T_N((\alpha_1 * \beta_1) * \gamma_1), T_N(\beta_1 * \gamma_1)\}, \text{ for all } \alpha_1, \beta_1, \gamma_1 \in X.$$

Similarly, we can prove for I_N and F_N . Hence N is neutrosophic implicative ideal of X.

Definition 3.17. Let N be a neutrosophic subset of BF-algebra X. For $t \in [0,1]$ the set $N_t = \{\alpha_1 \in X/N(\alpha_1) = t\}$ is called a level subset of N.

Definition 3.18. Suppose that X is a BF-algebra. A neutrosophic subset N in X is called a neutrosophic p-ideal if it satisfies the following:

For all $\alpha_1, \beta_1, \gamma_1 \in X$,

(i)
$$T_N(0) = T_N(\alpha_1)$$
; $I_N(0) = I_N(\alpha_1)$; $F_N(0) = F_N(\alpha_1)$,

(ii)
$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), T_N(\beta_1)\};$$

 $I_N(\alpha_1) \ge \min\{I_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), I_N(\beta_1)\};$
 $F_N(\alpha_1) = \max\{F_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), F_N(\beta_1)\}.$

Example 3.19. Consider a set $N = \{0, \alpha_1, 1\}$ be a neutrosophic subset of X. Define a binary operation '*' on N given by Table 3.9, and neutrosophic set by Table 3.10 as shown below:

Table 3.9. '*' Operation

*	0	α_1	1
0	0	α_1	1
α_1	α_1	0	1
1	1	1	0

Table 3.10. Neutrosophic set

N A	0	α_1	1
T_N	0.8	0.7	0.7
I_N	0.7	0.5	0.5
F_N	0.2	0.1	0.1

It is easily verified that N is p-ideal of X, and that it satisfies the conditions of Definition 3.18.

Note. Every neutrosophic *p*-ideal is neutrosophic ideal.

Theorem 3.20. Suppose that X is a BF-algebra. If a BF-algebra's neutrosophic ideal N is also a neutrosophic p-ideal, then

$$T_N(\alpha_1) = T_N(0 * (0 * \alpha_1)).$$

Proof. Let *X* be a BF-algebra and N be a neutrosophic *p*-ideal.

Then, we have

$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), T_N(\beta_1)\}, \text{ for all } \alpha_1, \beta_1, \gamma_1 \in X.$$

Putting $\beta_1 = 0$ and $\gamma_1 = \alpha_1$ then, we get

$$T_N(\alpha_1) = T_N(0 * (0 * \alpha_1)).$$

Similarly, we can prove for I_N and F_N .

Theorem 3.21. Assume that BF-algebra X has neutrosophic ideals N and N_1 be such that $N = N_1$ and $T_N(0) = T_{N_1}(0)$ if N is neutrosophic p-ideal of X, then T_{N_1} is also neutrosophic p-ideal of X.

Proof. Given that N and N_1 be neutrosophic ideals of BF-algebra X such that $N=N_1$ and $T_N(0)=T_{N_1}(0)$. Let N is neutrosophic p-ideal of X. We have to prove N_1 is neutrosophic p-ideal of X. It is enough to show that

$$T_{N_1}(\alpha_1) = T_{N_1}(0 * (0 * \alpha_1)), \text{ for each } \alpha_1 \in X.$$

Take $s = 0 * (0 * \alpha_1)$ then

$$\begin{split} T_N\{0*(0*(\alpha_1*s))\} &= T_N\{0*((0*\alpha_1)*(0*s))\} \\ &= T_N\{(0*(0*\alpha_1))*(0*(0*s))\} \\ &= T_N\{(0*(0*\alpha_1))*(0*(0*(0*\alpha_1))\} \\ &= T_N\{(0*(0*\alpha_1))*(0*(0*\alpha_1))\} = 0 \quad \text{(since $\alpha_1*\alpha_1=0$)} \end{split}$$

Hence,

$$T_N(0*(0*(\alpha_1*s)) = T_N(0) = T_{N_1}(0).$$

Since N is a neutrosophic p-ideal of X and by using Theorem 3.20, we get

$$T_N(\alpha_1 * s) = T_N(0 * (0 * (\alpha_1 * s)) = T_{N_1}(0)$$

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp. 213–226, 2025

implies

$$T_{N_1}(\alpha_1 * s) = T_N(\alpha_1 * s) = T_{N_1}(0) = T_{N_1}(s).$$

Since T_{N_1} is neutrosophic ideal of X, we have

$$T_{N_1}(\alpha_1) = T_{N_1}(0 * (0 * \alpha_1)).$$

Similarly, we can prove for I_N and F_N . Hence, T_{N_1} is neutrosophic p-ideal of X.

Theorem 3.22. A BF-algebra X's neutrosophic set N is a neutrosophic p-ideal of X if and only if N_t is either empty or a p-ideal of X for every 't' in [0,1].

Proof. Let N be a neutrosophic p-ideal in X and $N_t \neq \varphi$, for $t \in [0,1]$.

Since

$$T_N(0) = T_N(\alpha_1) = t$$
, for all $t \in [0, 1]$.

Thus, $0 \in N_t$. Now let

$$(\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1) \in N_t$$
 and $\beta_1 \in N_t$

$$\Rightarrow$$
 $T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)) = t$ and $T_N(\beta_1) = t$

by (ii) of Definition 3.18, we have

$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), T_N(\beta_1)\} = t.$$

Hence $\alpha_1 \in N_t$, thus N_t is a *p*-ideal of X.

Conversely, suppose that for each $t \in [0,1]$, N_t is either empty or a p-ideal of X. For all $\alpha_1 \in X$, let $T_N(\alpha_1) = t$, then $\alpha_1 \in N_t$ since $N_t \neq \emptyset$ is a p-ideal of X, so $0 \in N_t$ implies $T_N(0) = t = T_N(\alpha_1)$ implies $T_N(0) = T_N(\alpha_1)$, for all $\alpha_1 \in X$.

Now, we have to prove that N satisfies

$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), T_N(\beta_1)\},\$$

for all $\alpha_1, \beta_1, \gamma_1 \in X$. Suppose

$$T_N(\alpha_1) = \min\{T_N((\alpha_1 * \gamma_1) * (\beta_1 * \gamma_1)), T_N(\beta_1)\}\$$

is not true.

Then, there exists $\alpha_{10}, \beta_{10}, \gamma_{10} \in X$ such that

$$T_N(\alpha_{10}) < \min\{T_N((\alpha_{10} * \gamma_{10}) * (y_0 * \gamma_{10})) * T_N(y_0)\}.$$

Let

$$t_0 = \frac{1}{2} [T_N(\alpha_{10}) + \min\{T_N((\alpha_{10} * \gamma_{10}) * (\beta_{10} * \gamma_{10})) * T_N(\beta_{10})\}]$$

$$\Rightarrow T_N(\alpha_{10}) < t_0 < \min\{T_N((\alpha_{10} * \gamma_{10}) * (\beta_{10} * \gamma_{10})) * T_N(\beta_{10})\}.$$

Hence $(\alpha_{10} * z_0) * (\beta_{10} * \gamma_{10}) \in N_{t_0}$ and $\beta_{10} \in N_{t_0}$ but $\alpha_{10} \notin N_{t_0}$.

Thus, N_{t_0} is not a *p*-ideal of *X*. This is the contradiction.

Similarly, we can prove for I_N and F_{N_1}

Therefore, N is neutrosophic p-ideal of X.

4. Conclusions

This paper begins by considering the notions of the neutrosophic ideal of BF-algebra with suitable illustrations, and we investigate several basic properties related to the neutrosophic ideal in BF-algebra. Additionally, we discuss and examine some of the features of neutrosophic implicative ideals, neutrosophic positive implicative ideals, and neutrosophic ideals in BF-algebras. In future work, we will consider the concepts of neutrosophic implicative ideal and neutrosophic completely closed ideal in BH and BE-algebras and investigate some of their properties.

5. Acknowledgement

The authors wish to express their thanks to the authors of the neutrosophic for the supplied scientific aspects and ideas for this.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- [1] M. M. Abdulkadhim, Q. H. Imran, A. H. Al-Obaidi and S. Broumi, On neutrosophic crisp generalized alpha generalized closed sets, *International Journal of Neutrosophic Science* **19**(1) (2022), 107 115.
- [2] A. Al-Masarwah and A. G. Ahmad, A new interpretation of multi-polarity fuzziness subalgebras of BCK/BCI-algebras, *Fuzzy Information and Engineering* **14**(3) (2022), 243 254, DOI: 10.1080/16168658.2022.2141435.
- [3] A. Al-Masarwah, A. G. Ahmad, G. Muhiuddin and D. Al-Kadi, Generalized *m*-polar fuzzy positive implicative ideals of BCK-algebras, *Journal of Mathematics* **2021** (2021), 6610009, DOI: 10.1155/2021/6610009.
- [4] S. Florentine, Neutrosophic set a generalization of the intuitionistic fuzzy set, *International Journal of Pure and Applied Mathematics* **24** (2005), 287 297, URL: https://ijpam.eu/contents/2005-24-3/1/1.pdf.
- [5] A. Ibrahim and B. Kavitha, On neutrosophic ideals of BN-algebras, *Mathematical Forum* **30** (2022), 11 pages.
- [6] Y. Imai and K. Iséki, On axiom systems of propositional calculi, XIV, *Proceedings of the Japan Academy* **42** (1966), 19 22, DOI: 10.3792/pja/1195522169.
- [7] Y. B. Jun and K. H. Kim, Intuitionistic fuzzy ideals of BCK-algebras, *International Journal of Mathematics and Mathematical Science* **24**(12) (2000), 839 849, DOI: 10.1155/S0161171200004610.
- [8] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, *Scientiae Mathematicae* 1(3) (1998), 347 354, URL: https://www.jams.jp/scm/contents/Vol-1-3/1-3-12.pdf.

- [9] Y. B. Jun, S. J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, *Axioms* **7**(2) (2018), 23, DOI: 10.3390/axioms7020023.
- [10] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N-structures and their applications in semigroups, *Annals of Fuzzy Mathematics and Informatics* 14 (2017), 583 598, URL: http://www.afmi.or.kr/papers/2017/Vol-14_No-06/PDF/AFMI-14-6(583-598)-H-170903R1.pdf.
- [11] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, International Journal of Mathematics and Mathematical Science 27(12) (2001), 589427, DOI: 10.1155/S0161171201006627.
- [12] M. A. Oztürk and Y.B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, *Journal of the International Mathematical Virtual Institute* 8 (2018), 1 17.
- [13] A. B. Saeid and M. A. Rezvani, On fuzzy BF-algebras, *International Mathematical Forum* 4 (2009), 13 25.
- [14] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, *Annals of Fuzzy Mathematics and Informatics* 14(1) (2017), 87 97.
- [15] B. Satyanarayana and R. D. Prasad, Product of intuitionistic fuzzy BCK-algebras, *Advances in Fuzzy Mathematics* 1 (2009), 1-8.
- [16] B. Satyanarayana and R. D. Prasad, Direct product of finite intuitionistic fuzzy BCK-algebras, Global Journal of Pure and Applied Mathematics 2 (2009), 125 138.
- [17] B. Satyanarayana, D. Ramesh, M. V. V. Kumar and R. D. Prasad, On fuzzy ideals in BF-algebra, International Journal of Mathematical Science and Engineering Applications 4(V) (2010), 263 – 274.
- [18] M. M. Takallo and Y. B. Jun, Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras, *Journal of Algebraic Hyperstructures and Logical Algebras* 1(1) (2020),95 105 (2020), URL: https://fs.unm.edu/neut/CommutativeNeutrosophicQuadruple.pdf.
- [19] A. Walendziak, On BF-algebras, *Mathematica Slovaca* 57 (2007), 119 128, DOI: 10.2478/s12175-007-0003-x.
- [20] L. A. Zadeh, Fuzzy sets, *Information and Control* 8(3) (1965), 338 353, DOI: 10.1016/S0019-9958(65)90241-X.
- [21] J. Zhan and Z. Tan, Characterizations of doubt fuzzy H-ideals in BCK-algebras, *Soochow Journal of Mathematics* 29 (2003), 293 298.

