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1. Introduction

The concept of BF-algebra was first developed by Jun et al. [8]] in 1998, which is a generalisation
of BCK/BCI/B algebras. Imai and Iséki [6] presented the BCK and BCI classes of abstract
algebras in 1966. The concept of B-algebra, a generalization of BCK-algebras, was first proposed
by Neggers et al. [[11] in 2001. In 2010, fuzzy ideals, fuzzy implicative ideals, and fuzzy ideals in
BF-algebra were introduced by Satyanarayana et al. [17]]. Florentine [4] introduced the definition
of neutrosophic set. Ibrahim and Kavitha [5]] looked into some properties and presented the
notation of a neutrosophic ideal of BN-algebra.

In this work, we first introduce the notion of the neutrosophic ideal of BF-algebras and then
look into a number of fundamental properties that are connected to it.
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2. Preliminaries

In order to better understand the primary findings, we go over the basic definitions of BF-algebra,
ideals, and ideal characteristics in this section. We also go over the concepts of neutrosophic
sets and neutrosophic ideals of BF-algebra.

Theorem 2.1 ([17]). A non-empty set X with a constant 0 and a binary operation ‘x’ that satisfies
the following axioms is called a BF-algebra:
if forall a;,p1€X,

(i) a1*a1=0,
(1) a;1*0=ay,

(iii) O* (a1 * 1) =P1*ay, forall a1,p1€X.

Note. The following is true for any BF-algebra X, for all a1,f; € X,
(i) If 0x a3 =0+ B, then a1 = f1,
(i1) 0= (ay*PB1) =(0=ay)=*(0x*fq).
Example 2.2 ([17]). Let R be the set of real numbers and let X = (R, %,0) be the algebra with
the operation ‘*’ defined by
al, if ,31 = 0,
a1 *Pf1=1 p1, ifa1=0,
0, otherwise.
Then, X is BF-algebra.

Definition 2.3 ([[17]). A non-empty subset S of a BF-algebra X is called a subalgebra of X if
ar*p1e€X, forall a,p1€S.
Definition 2.4 ([17]). A non-empty subset A of X is called ideal of X, if it satisfied the following:
for all @1,B1€ X,
(i) 0€A,
(i) a;*pP1€A and f1€ A then a1 € A.
Definition 2.5 ([17]]). A subset that is not empty an implicative ideal is one that satisfies

the following:
for every a1, 1,71 € X,

(i) O0€A,
(i1) ((aq* B1)*7y1) and By *y1 € A implies a; *y; € A.
Definition 2.6 ([[17]). A non-empty subset A in a BF-algebra X is called a p-ideal of X, if it

satisfied the following:
for all a1, B1,71€X,

(1) O0€A,
(i) (a1 *y1)*(B1*y1)€A and B; € A implies a1 € A.
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Definition 2.7 ([17]). An BF-algebra X is referred to as the quasi-right alternative BF-algebra,
provided that it met the requirement that, for any a1,8; € X, a1 * (B1 * f1) = (a1 * f1) * B1.

Definition 2.8 ([17]). An BF-algebra If, for every ai,f1,y1 in X, it satisfies the condition
(a1 *y1) *(B1 *y1) =(a1 * B1) *y1, then X is a positive implicative BF-algebra.

Definition 2.9 ([17]). A BF-algebra’s non-empty subset A. If X met the following conditions,
it is referred to be a p-ideal of X, for all a1,81,y1€ X,

(i) 0€A,

(i) (a1 *y1)*(Br*y1)€eA and B; € A implies a1 € A.

Definition 2.10 ([17]]). Given two BF-algebras (X, *,0) and (X', *,0), let f be a function from
X into X'. The fuzzy set in X defined by if v is a fuzzy set in f is the preimage of v under f in
X' for all a; € X, f~1(w)a1) = v(f(ay)).

Definition 2.11 ([17]). Let (X, *,0) and (X', *’,0") be two BF-algebras and let f is a mapping
from X into X' is called homomorphism if f(a; * 1) = f(ay) ' f(B1), for all a1,B1 € X.

Note. A onto homomorphism is called epimorphism.

Definition 2.12 ([4]). Let U be the discourse universe. A neutrosophic set N of U is
characterized by a truth membership function 7'y, an indeterminacy membership function Iy,
and a falsity membership function F, where Ty, Ix, and F are real standard elements of
[0,1]. It can be written as N = {(a1, Tn(a@1), In(a1), Fn(a1))/A e U}, Tn,In,Fy € 10,1[. There is
no restriction on the sum of T'x(a1), In(a1) and Fy(aq1), and thus,

0" < Tn(ay)+In(ay)+Fy(a1)<3™ .

Definition 2.13 ([5]). A neutrosophic set N = {T'n,In,Fn} of BN-algebra (A, %,0), if N is called
an neutrosophic ideal of BN-algebra A, if it satisfied the following:
for all @1,B1 €A,

(1) Tn(0)=Tn(a1),IN(0)=IN(a;1),FN(0) < Fy(ay),

(i1)) Tn(a1)zmin{Tn(a1 * B1), Tn(B1)}; In(B1)zmin{Iy(a; * B1), IN(B1)};
Fn(ai)=max{Fn(a1 * 1), Fn(B1)}.

3. Main Results

The main results of the research are presented in this section beginning with an explanation
of neutrosophic ideals of BF-algebra with an example. In addition, it contains several basic
properties which are related to neutrosophic ideal in BF-algebra.

Definition 3.1. Let (X, *,0) be a BF-algebra, and let N be a non-empty neutrosophic set of a
BF-algebra X is called neutrosophic ideal of X, if it satisfies the following:
for all @1,B1 €N,

(1) Tn(0)=Tn(a1); In(0) = In(a1); Fn(0) = Fy(ay),

(i) Twn(a1) =min{Tn(a; * B1), Tn(B1)}; In(a1) = min{Iy(a1 * B1),IN(B1)};
Fn(a1) < max{Fy(aj * f1),FN(B1)}.
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Example 3.2. Consider a set A ={0,a1,1}. Define a binary operation ‘*’ on N given by Table
and neutrosophic set by Table [3.2|as shown below:

Table 3.1. ‘x’ Operation Table 3.2. Neutrosophic set
* 0 a1 1 N A 0 ay 1
0 0 a1 1
Tn 09 0.7 ]0.7
a1 a1 0 1
In 0.8 06|06
1 1 0
Fy 03]02]02

It is easily verified that N is a neutrosophic ideal of X, and that it satisfies the conditions of
Definition

Definition 3.3. Let (X, *,0) be a BF-algebra, and let be N a non-empty neutrosophic subset N
of X, N is called neutrosophic sub-algebra of X, if it satisfies the following:
for all @1,B1€ X,

(1) Tn(a1* B1) 2min{Tn(a1), Tn(B1)};
(1) In(aq1* B1)=min{In(a1),In(B1)};
(iii) Fy(ai * B1) =max{Fn(a1),Fn(B1)}.

Definition 3.4. Consider a set A = {0,a1,1} be a neutrosophic subset of X. Define a binary
operation ‘x’ on N given by Table and neutrosophic set by Table[3.4] as shown below:

Table 3.3. ‘x’ Operation Table 3.4. Neutrosophic set

0 0 a1 1
Tn 0.7 05|05

a1 a1 0 1
In 060404

1 1 0
Fy 020101

It is easily verified that N is neutrosophic sub-algebra of X, and that it satisfies the conditions
of Definition [3.3l

Theorem 3.5. If a neutrosophic set N in a BF-algebra X is a neutrosophic ideal, then
(a1 *P1)*y1=0, for all ai,P1,y1 €N implies
(1) Tn(a1) =z min{Tn(B1), Tn(y1)};
(i1) In(a1) =min{In(B1),In(y1)};
(iii)) Fn(a1) <max{Fn(f1),Fn(y1)}.

Proof. Let N be a neutrosophic ideal of X.
Then

TN(al) = min{TN((al * ﬁl) * }/1), TN(,Bl)}, for all al,ﬁl,)q € X,
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=min{min{T'n((a1 * B1) * v1), Tn(B1)}, Tn(B1)}
=min{min{T'n(0), Tn(y D)}, Tn(B1)}
=min{Tn(y1), Tn(B1)}.
Thus,
Tn(a1) =min{TnN(B1),Tn(y1)}, forall a1,B1,y1€X.
Similarly, we can prove for In(a1). Next,
Fn(a1) =max{Fn((a1 * B1) *y1),Fn(B1)}, forall a,B1,y1€X,
< max{max{Fy((a1 * 1) * y1),FN(1)}, FN(B1)}
= max{max{Fy(0), Fx(y1)},Fn(B1)}
=max{Fn(y1),Fn(B1)}.
Thus,
Fn(a1) =max{Fn(f1),Fn(z)}, forall a1,B1,y1€X. O

Theorem 3.6. A subset N of BF-algebra that is neutrosophic if and only if X is a neutrosophic
ideal of X, then for every 1 €[0,1], N; ={ai/a1 € X, Tn(a1) =1} is X’s ideal, when N; # @.

Proof. Let N be a neutrosophic subset of a BF-algebra X.
If N is a neutrosophic ideal of X, and y € N;.
Then, from Definition [3.1],

Tn(0)=Tpn(a1), foralla;eX
=T.

Therefore, 0 € N;.
Let a; * B1 € N, f1 € N;. Then

Tn(ap*B1)=A and Tn(B1)=71, forall a;,p;eX.
Thus,

Tn(a1) =min{Tn(a; * B1), Tn(B1)}

=T.

Therefore, x € N,. Similarly, we can prove for Iy and Fy.
Hence, N; is X’s ideal.
Conversely, if for every 7 €[0,1], N; ={a1/a; € X,Tn(a1) =1} is X’s ideal, when N; # @.
To prove: A neutrosophic subset N of BF-algebra X is neutrosophic ideal of X.

It is enough to prove the following:
for all a1,B1€ X,

(i) Tn(0) = Tn(ay), and
(i1) Tn(a1) =z min{T'n(ay * B1), Tn(B1)}.
If Tn(0) = Tn(ay), for all @1 € X is not true, that implies
Tn(0) < Tyn(ay1), for some a1€X.
Then, there exists aiy € X such that Tn(0) < Tn(a1g).
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Let

_ Tn(ai9)+Tn(0)
- 2
TN(0)<‘L'(), 0=T0<TN((X10): 1

To

Tn(aig) > To.
Then,
a10€N;, and N, #¢@.
But, N;, is an ideal of X, so 0 € Ny,,.
Therefore, from the definition of N;;, we have
Tn(0) =19
which is contradiction to T (0) < 7.
Thus,
Tn(©0)=Tpn(ay), forall a;eX.
If Tn(ay) = min{Tn(a1 * B1), Tn(B1)} is not true.
Then, there exists a1, 81y € X such that
Tn(a19) <min{Tn(a1¢ * B1¢), Tn(B19)}-
Let 71 € [0, 1] such that

_ Tn(aip)+min{Tn(a1¢ * f19), Tn(B10)}
- 5 .

T1

Then

Tn(a19) <71, 0=711 <min{Tn(a19* P1¢), Tn(P1o)} =1,
= min{Tn(a1¢ * B1g), TN(B1o)} > 71
= Tn(a1o * P1g) > 711 and Tn(B1g) > 71
= 10 * P1g € N7, and f15€ Ny,
= Ny, #pand ajg€ N, (since Ny, is an ideal)
Thus, we have

Tn(aig) > 711,
which is contradiction to T'n(a1¢) < 71.
Hence,

Tn(a1) =min{Tn(ay * 1), Tn(B1)}, for all a1, € X.

Similarly, we can prove for Iy and F. Therefore, N is an neutrosophic ideal of X. O

Lemma 3.7. If N is a neutrosophic BF-subalgebra of X, then Tn(0)=Tn(a1), IN(0) = In(aq),
and Fn(0) < Fyn(ay), for all a1 € X.

Proof. Proof of the lemma is straight forward. O

Theorem 3.8. A neutrosophic subset N of a quasi-right alternative BF-algebra X is neutrosophic
sub-algebra if and only if N is a neutrosophic ideal.
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Proof. Let N be neutrosophic sub-algebra of quasi-right alternative BF-algebra X.
Then from Lemma we have

Tn(©0)=Tpn(ay), forall a;eX.
For all a; € X and
T'n(ay) =Tn(ay%0)
=Tn(ay *(B1* 1))
=Tn((ay* f1)* B1), a1#p1
implies
Tn(a1) =min{Tn(a1 * B1), Tn(B1)}, a1 # P1, forall a;,p;eX.
If a1 = f1,
T'n(a1) =min{Tn(ay * a1), Tn(a1)} = min{TN(0), Tn(a1)} = Tn(aq).
Therefore, we have
Tn(ay1) =min{Tn(a7 * 1), Tn(a1)}, forall ai,BreX.
Similarly, we can prove for Iy and Fy. Thus, N is a neutrosophic ideal of X.
Conversely, if N is neutrosophic ideal, then

Tn(aq* 1) =min{Tn(a1 * B1) * B1,Tn(B1)}, forall ay,fr1e€X
=min{Tn(ay *(B1 * f1), Tn(f1)}, a1 # P
=min{Tn(a1),Tn(B1)}, a1# P
=min{Tn(a1),Tn(f1)}, when a; # ;.

If a1 = fa,

Tn(ay * 1) =TNn(0) = Tn(a1) = min{Tn(a1), Tn(a1)}.
Therefore, we have

Tn(ay = B1) =min{Tn(a1),Tn(B1)}, forall ai,p;eX.

Similarly, we can prove for Iy and F. Hence, N is a neutrosophic sub-algebra of X. O
Next, we discuss homomorphism and epimorphism mappings on neutrosophic ideal.

Theorem 3.9. For BF-algebra (X,*,0) let f be a homomorphic mapping onto BF-algebra
(X1,*',0"), when N7 is a neutrosophic ideal of X1, then X is a neutrosophic ideal of N1’s
homomorphic preimage N under f.

Proof. 1t is easy to see that
Tn(©0)=Tpn(a1), forall a;eX.
For all a1,p;1 € X,
Tn(a1) =Tn,(f(a1)
= min{Tn,(f (a1 =" 1))}, T, (F (B}
=min{Tn(a;1 *' 1), Tn(B1)}, for all a1,B1€X.

Similarly, we can prove for I and Fn. Hence, N is neutrosophic ideal of X. O

Journal of Informatics and Mathematical Sciences, Vol. 17, No. 2, pp.[213 , 2025



220 Some Neutrosophic Ideals of BF-algebras: A. Ibrahim and B. Kavitha

Theorem 3.10. For BF-algebras, [ : X — X1 be an epimorphism. This means that f~1(N1) is a
neutrosophic ideal of X if N1 is a neutrosophic ideal in X;.

Proof. Let f : X — X1 be a BF’s epimorphism and let N1 be a neutrosophic ideal in X;. It is
easy to see that

fFHUTN, (0} = f 1T, (a1)}, forall a; € X.
For all x,y e X,
fHTn (@)} = T, {f (a1)}
=min{Tn,(f (a1 * B1), Tn, (f (B1)))}
= min(f T, (a1 * BV}, F~HT N, (BDD.
Similarly, we can prove for I and F. Thus, f _l{TNl} is a neutrosophic ideal in X. O

Definition 3.11. Let X be a BF-algebra, a neutrosophic subset N of X is called a neutrosophic
implicative ideal of X, if it satisfies the following:
for all a1,B1,71€X,

(1) Tn(0)=Tn(a1); IN0) =In(a1); Fn(0) = Fn(a1),
(i) Twn(ai*vy1)=min{Tn((a;1 * B1) *y1), Tn(B1 * y1)};

In(ar *y1) =min{In((a1 * f1) * Y1), IN(B1 * ¥1);
Fn(aq *y1) smax{Fy(a1 * f1) * Y1), Fn(B1 * Y1)}

Example 3.12. Consider a set A ={0,a1,1} be a neutrosophic subset of X. Define a binary
operation ‘x’ on N given by Table and neutrosophic set by Table[3.6/as shown below:

Table 3.5. ‘x’ Operation Table 3.6. Neutrosophic set
0 0 a1 1
TN 09 | 0.7 0.7
aq aq 0 1
I . . .
1 1 0 N 0.8 06| 0.6
Fy 03|02 0.2

It is easily verified that N is a neutrosophic implicative ideal of X, and that it satisfies
the conditions of Definition

Definition 3.13. A neutrosophic positive implicative ideal of X is defined as a neutrosophic
subset N of X that meets the following:
For all a1,B1,71€ X,

(1) Tn(0)=Tn(a1); IN)=In(a1); FN(0)=Fn(ay),
(1) Twn(a1*y1) =min{Tn(a1 * 1) * Y1), Tn(B1 *y1)};

In(ay *y1) =min{In(a1 * B1) * y1),In(B1 * yD};
Fn(ay *y1) <max{Fy(ai * B1) *y1),FN(B1 * Y1)}

Example 3.14. Consider a set A ={0,a1,1} be a neutrosophic subset of X. Define a binary
operation ‘*’ on N given by Table and neutrosophic set by Table [3.8 as shown below:
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Table 3.7. ‘+* Operation Table 3.8. Neutrosophic set

A
* 0 a1 1 N 0 a1 1
0 0 | a1 | 1 Tn 0.8 0808
ar | a1 | 0 |1 Iy 06|06 | 0.6
1 1 0 Fy 0.2 | 0.2 ] 0.2

It is easily verified that N is neutrosophic positive implicative ideal of X, and that it satisfies
the conditions of Definition

Theorem 3.15. The neutrosophic ideal N of BF-algebra X must be a neutrosophic implicative
ideal. Alternatively, the neutrosophic implicative ideal must be the BF-algebra X positive
implicative ideal.

Proof. Let the implicative ideal N be neutrosophic.
Then from Definition [3.11} we have

(i) Tn(0)=Tn(ay),
(i) Tn(ai*y1)=min{Tn((a1* B1)* Y1), Tn(B1 * Y1)}, for all a1,pB1,y1€X.
Put y; =0 in (ii), we get
Tn(ai *0) =min{Tn((ay * 1) * 0), Tn(B1 * 0)} (since a; *0=ay)
Tn(a1) = min{Tn (a1 * B1)), Tn(B1)}
Similarly, we can prove for Iy and Fy.
Hence, N is a neutrosophic ideal.
On the other hand, if X is positive implicative and N is a neutrosophic ideal. Then,
(g *2)*(B1*y1)=(ay*P1)*y1, forall ay,f1,y1€X,
Tn((aq *y1) *(B1*y1) = Tn((a1 * B1) * y1).
Since, N is neutrosophic ideal,
Tn(0)=Tpn(a1), foralla;eX
and
Tn(ay*y1) =Tn{(ay *y1) = (B1*y1), Tn(B1 * YD,
Tn(ay *y1) =min{Tn({(a1 * B1) * Y1)}, Tn(B1 *y1)} (by Definition [2.8)
Similarly, we can prove for Iy and Fy.
Hence, N is a neutrosophic implicative ideal. O

Theorem 3.16. Let N be a neutrosophic set in X defined for a1 € X by and let I be a subset of
BF-algebra,

Mo, ifar€el,
0o, otherwise,

TN(a1)={

where 0 =06y < uo in [0,1], if and only if I is an implicative ideal of X, then N is a neutrosophic
implicative ideal of X.
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Proof. Let N be neutrosophic implicative ideal of X.
Let aq €1, since

T'n(0) =Tn(a1) = po
= TnO)=po
> Oel
Let (a1 * B1)*y1 €1, for all a1,B1,y1€X.
Since

Tn(ay *y1) =min{Tn((a1 * 1) * y1), Tn(B1 * Y1)}

= min{yo, fio}
=Ho

= T'n(a1*v1) = po,
therefore, a1 *y1€1.
I is therefore an implicative ideal of X. On the other hand, suppose that I is X’s implicative
ideal.
To prove: N is neutrosophic implicative ideal of X.
Let a1 € X, if a; € I = Tn(a1) = uo since 0 € I, we have Tn(0) = g, therefore T'x(0) = Tn(a1).
If a; ¢ I > Tn(x)=6¢ since Tn(0) = po > 69 = Tn(aq), therefore Tn(0) > Ty (aq).
Hence, Tn(0) = Tn(aq), for all a7 € X.
Let (a1 * 1) *y1€ X and B1 *y1 € X, for all a1, B1,y1€X.
If (a1 B1)*y1 €I and B; *y1 €I implies (B1 *y1) € X (since [ is implicative ideal).
Therefore,

Tn(a1 *y1) = po = min{uo, po} = min{Tn((a1 * B1) * Y1), Tn(B1 * Y1)}
Let (a1 *B1)*y1 ¢ or B1*y1 ¢, then

min{Tn((a1 * B1) * y1), Tn(B1 * Y1)} = 80 = Tn(a1 * y1).
Therefore,

Tn(ay *y1) =min{Tn((a1 * B1) *y1), Tn(B1 *y1)}, for all a1,B1,y1€X.

Similarly, we can prove for Ix and F. Hence N is neutrosophic implicative ideal of X. O

Definition 3.17. Let N be a neutrosophic subset of BF-algebra X. For ¢ € [0,1] the set
N;={a1 € X/N(a1) =1t} is called a level subset of N.

Definition 3.18. Suppose that X is a BF-algebra. A neutrosophic subset N in X is called a
neutrosophic p-ideal if it satisfies the following:
For all a1,B1,y1€ X,
(i) Tn(0)=Tn(a1); In(0) = In(a1); FN(0) = Fy(ay),
(i1) Tn(a1) =min{Tn((ay *y1) * (1 *y1), Tn(B1)};
In(a1) 2 min{Iy((a1 *y1) * (B1 * Y1), In(B1)};
Fn(ay) = max{Fy((ay *y1) * (B1 *y1), FN(B1)}.
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Example 3.19. Consider a set N ={0,a1,1} be a neutrosophic subset of X. Define a binary
operation ‘x*’ on N given by Table and neutrosophic set by Table as shown below:

Table 3.9. ‘*’ Operation Table 3.10. Neutrosophic set
0 0 a1 1
TN 0.8 | 0.7 | 0.7
aq aq 0 1
1 1 0 Iy 0.7 1 05|05
Fy 0210101

It is easily verified that N is p-ideal of X, and that it satisfies the conditions of Definition [3.18]
Note. Every neutrosophic p-ideal is neutrosophic ideal.

Theorem 3.20. Suppose that X is a BF-algebra. If a BF-algebra’s neutrosophic ideal N is also a
neutrosophic p-ideal, then

Tn(a1)=Tn(0* (0 * ay)).

Proof. Let X be a BF-algebra and N be a neutrosophic p-ideal.
Then, we have

Tn(ap) =min{Tn((ay * y1) * (B1 *y1), Tn(B1)}, forall ag,B1,y1€X.
Putting f; =0 and y; = a; then, we get

Tn(a1) =TN(0 (0 * ay)).

Similarly, we can prove for Iy and Fy. O

Theorem 3.21. Assume that BF-algebra X has neutrosophic ideals N and N1 be such that
N = N; and Tn(0) = Tn,(0) if N is neutrosophic p-ideal of X, then Ty, is also neutrosophic
p-ideal of X.

Proof. Given that N and N; be neutrosophic ideals of BF-algebra X such that N = N; and
Tn(0) = Tn,(0). Let N is neutrosophic p-ideal of X. We have to prove N7 is neutrosophic p-ideal
of X. It is enough to show that

Tn,(a1)=TN,(0%(0*ay)), foreach a;eX.
Take s =0* (0 * a1) then
Tn{0*(0* (a1 *8)}=Tn{0%((0*aqp)*(0=x*s))}
=TN{(0* (0 * ay))* (0 * (0 *s))}
=TnN{(0*(0*aq))*(0=*(0*(0*(0=*ay))}
=TN{(0*(0*a1))*(0*(0*a1))}=0 (since aj* a1 =0)
Hence,
Tn(0 % (0 * (ay *s)) = Tn(0) = Ty, (0).
Since N is a neutrosophic p-ideal of X and by using Theorem [3.20, we get
Tn(ay*s)=Tn(0*(0x*(ag *s))=Tn,(0)
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implies
Tn, (a1 *s)=Tn(ay *s)=Tn,(0) = Tn,(s).
Since T'y, is neutrosophic ideal of X, we have
Tny(a1) = TNy (0 % (0 * a1)).
Similarly, we can prove for Iy and Fy. Hence, Ty, is neutrosophic p-ideal of X. O

Theorem 3.22. A BF-algebra X’s neutrosophic set N is a neutrosophic p-ideal of X if and only
if N; is either empty or a p-ideal of X for every ‘t’in [0,1].

Proof. Let N be a neutrosophic p-ideal in X and N; # ¢, for ¢ € [0,1].
Since
Tn(0)=Tpn(a1)=t, forallzel0,1].
Thus, 0 € N;. Now let
(a1 *y1)*(B1*y1) €Ny and P €N
> Tn((a1*y1)*(Br*y1)) =t and Tn(B1)=¢
by (i) of Definition we have
Tn(a1) =min{Tn((a1 * y1) * (B1*y1), Tn(B1)} = ¢.
Hence a1 € N;, thus N; is a p-ideal of X.
Conversely, suppose that for each ¢ €[0,1], N; is either empty or a p-ideal of X. For all a; € X,
let Tn(a1) =t, then a1 € N; since N; # ¢ is a p-ideal of X, so 0 € N; implies Tn(0) =¢ = Tn(a1)
implies T (0) = Tn(a1), for all a; € X.
Now, we have to prove that N satisfies
T'n(ap) =min{Tn((ay *y1) * (B1 * Y1), Tn(B1)},
for all a1,B1,y1 € X. Suppose
T'n(a1) =min{Tn((a1 *y1) * (1 * Y1), Tn(B1)}
is not true.
Then, there exists a19,1¢,Y19 € X such that
Tn(a19) <min{Tn((a19 * Y19) * (yo * Y1¢)) * Tn(y0)}.
Let

1
to= §[TN(0¢10) +min{Tn (a1 *Y19) * (B10 * Y1) * TN (B10)}]

= Tn(a1o) < to <min{Tn((@1¢ * Y1¢) * (B1g * Y10)) * Tn(B1o)}-

Hence (a1¢ * 20) * (B1g * Y1¢) € N¢, and f1g € Ny, but a1g ¢ Ny,.

Thus, Ny, is not a p-ideal of X. This is the contradiction.

Similarly, we can prove for Iy and F.

Therefore, N is neutrosophic p-ideal of X. O
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4. Conclusions

This paper begins by considering the notions of the neutrosophic ideal of BF-algebra with
suitable illustrations, and we investigate several basic properties related to the neutrosophic
ideal in BF-algebra. Additionally, we discuss and examine some of the features of neutrosophic
implicative ideals, neutrosophic positive implicative ideals, and neutrosophic ideals in BF-
algebras. In future work, we will consider the concepts of neutrosophic implicative ideal and
neutrosophic completely closed ideal in BH and BE-algebras and investigate some of their
properties.
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