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Stochastic Derivation of an Integral Equation
for Probability Generating Functions

Panagiotis T. Artikis and Constantinos T. Artikis

Abstract Functional, integral and differential equations of transformed
probability generating functions are generally recognized as powerful analytical
tools for establishing characterizations of discrete probability distributions. The
present paper establishes a characterization of the distribution of an important
integral part model by incorporating an integral equation based on three
fundamental transformed probability generating functions. Interpretations of
such a characterization in analyzing and implementing information risk frequency
reduction operations are also established.

1. Introduction

Stochastic multiplicative models incorporating two nonnegative random
variables are generally recognized as very strong analytical tools of several
fundamental areas of probability theory [3]. Moreover, such stochastic models
have very useful applications in economics, management, operational research,
risk theory, insurance, reliability theory, logistics, engineering, informatics, and
other fundamental practical disciplines. If the two nonnegative random variables
of a stochastic multiplicative model are independent, then the distribution function
of this model belongs to the class of scale mixtures of distribution functions
[6]. This class has substantially contributed to the investigation of unimodality,
infinite divisibility, selfdecomposability, stability and other significant theoretical
properties with particular practical importance of many fundamental classes of
distribution functions [8]. The literature concentrating on the investigation of the
theoretical properties and practical applications of stochastic multiplicative models
incorporating two nonnegative and independent random variables is very broad

2010 Mathematics Subject Classification. 91B30; 65R20; 91B70.
Key words and phrases. Integral equation; Stochastic models; Risk theory.

Copyright © 2013 Panagiotis T. Artikis et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



158 Panagiotis T. Artikis and Constantinos T. Artikis

[9]. Properties and practical applications in information risk management of a
stochastic multiplicative model incorporating two nonnegative and independent
random variables, one of which follows the standard uniform distribution and the
other is the sum of two nonnegative and independent random variables, have been
established by Artikis and Artikis [1].

The present paper is devoted to the establishment of properties and applications
in information risk management of a discrete analogue of such a stochastic
multiplicative model by making use of the stochastic model

M = [ΠB],

where Π , B are independent random variables with Π taking values in the
set N = {1, 2, 3, . . . } , B following the standard uniform distribution and [ΠB]
denoting the integral part of ΠB . If

P(Π = π) = pπ, π= 1, 2, . . .

is the probability function of Π and PΠ(z) is the probability generating function of
Π , then

P(M = m) =
∞∑

π=m+1

pπ
π

, m= 0, 1, 2, . . .

is the probability function of M and

PM (z) =
1

1− z

∫ 1

z

PΠ(β)
β

dβ

is the probability generating function of M [7].
The present paper concentrates on the implementation of two purposes. The

first purpose is the establishment of a characterization of the distribution of the
integral part model, based on the product of two independent random variables
one of which follows the geometric distribution and the other follows the standard
uniform distribution, by making use of an integral equation incorporating three
fundamental transformed probability generating functions. The second purpose is
the interpretation of such a characterization in the area of stochastic modelling of
information risk frequency reduction operations.

2. Certain Transformations of Probability Generating Functions

The present section of the paper mainly concentrates on the consideration of
certain known transformations of probability generating functions corresponding
to discrete random variables with values in the set N0 = {0, 1, 2, . . . } and finite
mean.
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Let X be a discrete random variable with values in the set N0 , probability
generating function PX (z) and finite mean µ , then

PU(z) =
1

µ(z− 1)
log PX (z), (2.1)

is a probability generating function of a discrete random variable U with values in
the set N0 and probability function having a unique mode at the point 0 if and only
if, X is infinitely divisible [2]. The formula (2.1) is a transformation which maps
the probability generating function PX (z) into the probability generating function
PU(z) . An integral equation incorporating the probability generating function
PU(z) and the probability generating function of an integral part model, based
on the product of two independent random variables one of which is distributed as
the random variable X+1 and the other follows the standard uniform distribution,
has been investigated by Artikis et al [2]. Moreover, the formula

PX (z) = exp[µ(z − 1)PU(z)] (2.2)

is a transformation which maps the probability generating function PU(z) into the
probability generating function PX (z) .

Let V be a discrete random variable with values in the set N0 , probability
generating function PV (z) and finite mean θ , then

PJ (z) =
1− PV (z)
θ (1− z)

(2.3)

is the probability generating function of the renewal distribution corresponding to
the distribution of the random variable V [4]. Formula (2.3) is a transformation
which maps the probability generating function PV (z) into the renewal probability
generating function PJ (z) .

The present paper makes use of the transformation in (2.2) and the
transformation in (2.3) to establish a characterization of a discrete distribution.

3. Characterizing the Distribution of an Integral Part Model

The present section of the paper establishes a characterization of the integral
part model based on the product of two independent random variables, one of
which is geometrically distributed and the other follows the standard uniform
distribution [2].

Theorem. Let W , T and L be independent random variables with W following the
standard uniform distribution and T , L distributed as the random variable S with
probability generating function

PS(z) = exp[κ(z − 1)PY (z)], κ > 0,

where PY (z) is the probability generating function of a discrete random variable Y
with values in the set N0 , finite mean and probability function having a unique mode
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at the point 0 . The probability generating function of the random variable Y has the
form

PY (z) =
p

q(z− 1)
log
�

p

1− qz

�
,

where

p =
1

κ+ 1
, q = 1− p

if and only if the stochastic model

C = [(L + T + 1)W],

denoting the integral part of

(L + T + 1)W,

is equally distributed with the random variable

R

following the renewal distribution corresponding to the distribution of the random
variable S .

Proof. Only the sufficient condition will be proved since the necessity condition
can be proved by reversing the argument.

It is readily shown that the independence of the random variables

W, T, L

implies the independence of the random variables

L+ T + 1, W.

Hence, it is also readily shown that the probability generating function of the
integral part model

C = [(L + T + 1)W]

is given by

PC(z) =
1

1− z

∫ 1

z

exp[2κ(w − 1)PY (w)] dw. (3.1)

Moreover, the probability generating function of the random variable R is given by

PR(z) =
1− exp[κ(z− 1)PY (z)]

κ(1− z)
. (3.2)

From (3.1), (3.2) and the assumption that the random variables

R, C = [(L+ T + 1)W]

are equal in distribution, we get the integral equation

1− exp[κ(z− 1)PY (z)]
κ(1− z)

=
1

1− z

∫ 1

z

exp[2κ(w − 1)PY (w)] dw. (3.3)
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If we multiply both sides of the integral equation in (3.3) by κ(1− z) and then
differentiate, we get the differential equation

exp[κ(z− 1)PY (z)]
d

dz
[κ(z− 1)PY (z)] = κexp[2κ(z− 1)PY (z)] (3.4)

which satisfies the boundary condition

PY (1) = 1.

Since the probability generating function

PS(z) = exp[(κ(z− 1)PY (z)]

has no real roots, then the differential equation in (3.4) can be written in the form

exp[−κ(z − 1)PY (z)]
d

dz
[−κ(z− 1)PY (z)] =−κ (3.5)

Integrating the differential equation in (3.5) with due regard to the above
boundary condition we get that

exp[−κ(z − 1)PY (z)] = κ+ 1−κz (3.6)

From (3.6) it follows that

PY (z) =
p

q(z− 1)
log
�

p

1− qz

�
(3.7)

with

p =
1

κ+ 1
and

q =
κ

κ+ 1
.

It is of some theoretical importance to mention that the above probability
generating function is derived from the transformation (2.1) if the random variable
X follows the geometric distribution with probability generating function

PX (z) =
p

1− qz
.

It is easily demonstrated that the random variable with probability generating
function PY (z) in (3.7) can be written in the form of the integral part model

Y = [DH],

where D , H are independent random variables with D following the geometric
distribution with probability generating function

PD(z) =
pz

1− qz

and H following the uniform distribution with probability density function

fH(h) = 1.
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An interpretation of the integral part model

C = [(L + T + 1)W]

incorporated by the present paper for characterizing the distribution of the integral
part model

Y = [DH],

in the area of risk frequency reduction operations is the following. We suppose that
the random variable L denotes the frequency of a risk and the random variable
T + 1 denotes the frequency of another risk. We also suppose that the risks are
of the same type. Since the random variable W follows the standard uniform
distribution, then the integral part model

C = [(L + T + 1)W]

can be interpreted as the total risk frequency after applying a risk frequency
reduction operation to these risks. The general recognition of risk frequency
reduction operations as extremely important, for proactive treatment of risks
threatening information systems of modern complex organizations, substantially
supports the applicability of the proposed interpretation of the integral part model
incorporated by this paper in analyzing and implementing such information risk
management operations [5]. ¤

4. Conclusions

The establishment of a characterization for the distribution of an integral part
model, based on the product of two independent random variables, one of which
follows the geometric distribution and the other follows the standard uniform
distribution, is the theoretical contribution of the paper. The practical contribution
of the paper consists of interpreting such a characterization in the area of stochastic
modelling of information risk frequency reduction operations.
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