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1. Introduction and Variational Calculations
The Ritz variational principle has been used to calculate energies of various systems.
The simplest calculation is of the helium atom. If the wave function is given by

ψ(⃗r1, r⃗2)=Ne−α(r1+r2)Y00(Ω1)Y (Ω2). (1.1)

The nonlinear parameter is α, which can be varied to obtain the lowest energy value, and N is
the normalization constant. The energy value is given by

E = 〈ψHψ〉
〈ψψ〉 . (1.2)

Assuming that the nucleus is of infinite mass, the Hamiltonian H is

H =−∇2
1 −∇2

2 −
2Z
r1

− 2Z
r2

+ 2
r12

. (1.3)
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The nuclear charge is Z. We find

E = 2α2 −4Zα+ 5α
4

, (1.4)

dE
dα = 0 gives α = 27

16 . Substituting this value in eq. (1.4), we find E = −2(27/16)2 = −5.695 Ry,
the calculated ionization energy. This approximation is called a close-shell approximation. This
value is far below the energy required to remove both electrons, which is approximately 5.807 Ry
(Pekeris [37]). We use Ry units, unless stated otherwise. It was suggested by Hylleraas [30] that
the interelectron distance r12 = |⃗r1 − r⃗2|, where r1 and r2 are the distances of the two electrons
from the nucleus should be included in the wave function. Therefore, in a variational calculation,
we should use a wave function of the form

ψ(⃗r1, r⃗2)= ∑
lmn

Clmnrl
1rm

2 rn
12e−γr1−δr2 ± (1↔ 2). (1.5)

This is known as a Hylleraas-type wave function. The plus sign refers to the singlet states and
the minus sign refers to the triplet states. Optimizing the nonlinear parameters to get the lowest
energy, we get for γ= 3.22, δ= 2.17, and N = 220 terms in the wave function E =−5.8074487 Ry
for the ground state of He (Bhatia [2]). Drake [26, 27] has obtained very accurate results for
the ground state as well as for the excited states by choosing a wave function with four nonlinear
parameters. Let

ψ(⃗r1, r⃗2,γi,δi)=
∑
lmn

Clmnrl
1rm

2 rm
12e−γir1−δir2 ± (1↔ 2). (1.6)

The final trial function chosen is of the form

ψ(⃗r1, r⃗2)=ψ(⃗r1, r⃗2,γ1,δ1)+ψ(⃗r1, r⃗2,γ2,δ2). (1.7)

Some of Drake’s results are given in Tables 1 and 2.

Table 1. Variational energies S states of He (a.u.)

Number of terms 11S Number of terms 23S

464 −2.903724377033946 451 −2.17522937823678730

561 −2.903724377034076 539 −2.17522937823678998

674 −2.903724377034107 640 −2.17522937823679080

797 −2.903724377034116 747 −2.17522937823679111

extrapolated −2.903724377034119 extrapolated −2.17522937823679123

21S

451 −2.145974046053418

539 −2.145974046054065

640 −2.14597046054304

747 −2.145974046054378

extrapolated −2.145974046054426
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Table 2. Variational energies of P states He (a.u.)

Number of terms 21P 23P

436 −2.123843086497525 −2.133164190777932
539 −2.123843086497975 −2.133164190778968
658 −2.123843086498068 −2.133164190779216
724 −2.123843086498084 −2133164190779250
804 −2.123843086498091 −2.133164190779268

extrapolated −2.123843086498094 −2.133164190779279

2. Asymptotic Method
Drake [26, 27] has calculated energy values of high-lying states, called Rydberg states.
A disadvantage of this method is that optimization of nonlinear parameters has to be carried out
for each state. This method involves lot of computer time and is very tedious. Drachman [24,25]
indicated that the outer electron polarizes the core. Considering He atom, the core consists of
He+. If the outer electron is at a distance x from the nucleus, then polarization potential in
terms of dipole, quadrupole and other polarizabilities is given by

U(x)=−α1

x4 − α2

x6 + δ

x7 − α3

x8 − ε

x9 . (2.1)

In addition to these polarizabilities, there are non-adiabatic polarizabilities contributing to the
potential seen by the outer electron

U ′(x)= 6β1

x6 + 15β2

x8 . (2.2)

Various values [25] are

α1 = 9
32

, α2 = 15
64

, α3 = 524
1024

, β1 = 42
512

, β2 = 107
2048

, γ= 519
12288

, and ε= 4229
32768

.

Drachman has called this method an asymptotic method. The polarizabilities of the core can
be calculated and then the expectation values of 1/xn can be calculated for any hydrogenic NL
state ( [26,27] [21]). Below, in Table 3, we compare the energies of some of the Rydberg states
obtained by the variational method of Drake and the asymptotic method of Drachman. The
results in Table 3 are given in MHz, where 1 Ry= 3.289×109 MHz.

Comparison of various energy values of N = 10 with experimental values (Hassels et al. [29])
are given in Table 4. The theoretical values include relativistic corrections.

The asymptotic method has been used for Rydberg states in lithium also. The generalized
polarizabilities have been calculated by Bhatia and Drachman [9]. In the calculation of the
Rydberg states, Bhatia and Drachman included relativistic corrections, retardation, radiative,
and Lamb shift corrections. These are given in Table 5 along with the uncorrected shifts
(Drachman and Bhatia [22]).

In Table 6 we compare level differences, in MHz, for lithium between theory and experiment
(Rothery et al. [38]). The earlier results given by Drachman and Bhatia [22] do not include
corrections given in Table 5. We find that the agreement with the experiment is very good,
showing that the asymptotic approach gives accurate results for the energy levels, and
importance of corrections is given in Table 5.
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Table 3. Comparison of the asymptotic nonrelativistic energy shifts in MHz with the accurate results of
Drake [26,27]

N L Asymptotic Variational V-A

5 4 −4677,0562±1.011 −4676.9348501 0.1213

10 −741.8875±0.521 −741.8935917 −0.0061

6 5 −959.6277±0.0022 959.61668162 0.0119

10 −257.9853±0.0059 −257.9830286 0.0023

7 8 −256.39849±0.00010 −256.3984126065 0.00008

10 −105.82980±0.00014 −105.829683489 0.00012

9 8 −30.71230412±2×10−7 N/A

10 −24.17863264±4×10−7 N/A

Table 4. Comparison of theoretical energy values [MHZ] with experiment

L → L′ Theory Experiment Experiment-Theory

4→ 5 490.9566± .521 491.0052± .0005 0.0486± .521

5→ 6 157.0499± .0059 157.0524± .0002 0.0025± .0059

6→ 7 60.81480± .00014 60.8159± .00002 0.0011± .0002

7→ 8 27.17502 27.1747± .0005 −0.0003± .0005

Table 5. Effect of small corrections on the uncorrected intervals, in MHz, for the N = 10 manifold of Li

L Uncorrected shift Relativistic polarizability Retardation Lamb shift Total

4 −535.343 0.1201 0.0654 −0.0251 −535.183

5 −195.5397 0.0416 0.0212 −0.0087 −195.4856

6 −86.2932 0.0170 0.0079 −0.0036 −86.2719

7 −43.49739 0.0078 0.0033 −0.0016 −43.4879

8 −24.02231 0.0039 0.0014 −0.0008 −24.0178

9 −14.013679 0.0020 0.0006 −0.0004 −14.0115

Table 6. Comparison of level differences for lithium, in MHz, between theory and experiment

Interval Experiment [38] – Theory [22] Experiment [38] – Theorya Standard deviation

10G-10H −0.08 0.02 0.11

10H-10I −0.0326 0.0003 0.0048
a Theory includes all the corrections given in Table 5.
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Similar calculations have been carried out for C IV, O VI, and Ne VIII [6]. In Table 7, we
give some results from [6].

Table 7. Theoretical fine-structure intervals in MHZ

C IV O VI Ne VIII

Interval Transition Transition Transition

10F-10G (21.54±0.71)×103 (42.8±1.3)×103 (8.09±0.18)×104

12G-12H 3438±23 8840±6.8 21241±85

12H-12I 1466.9±1.1 4779.46±0.43 12988.2±4.4

3. H2 and D2 Molecular Ions
Experiments [28, 42] to determine polarizabilities of H+

2 and D+
2 prompted us to calculate

wave functions to infer polarizabilities. Reversing electron and proton masses did not give any
satisfactory results, no matter what the number of terms was. This wave function does not
allow protons to remain in their positions and treats them like electrons. We did not want to use
the Born approximation to calculate the motion of protons, rather we wanted to treat the system
as a three-body system. To overcome this difficulty, Richard Drachman suggested that the power
n of r12, which represent interproton distance should be very high and the corresponding
nonlinear parameter should be half of n,

ψ(⃗r1, r⃗2)= ∑
lmn

Clmnrl
1rm

2 rn
12e−γr1−δr2−br12 ± (1↔ 2). (3.1)

The Hamiltonian for these systems is

H =−∇2
1 −∇2

2 −2µ∇⃗1 · ∇⃗2 − 2
r1

− 2
r2

+ 2
r12

. (3.2)

The 3rd term is the mass polarization term, µ= M
M+1 , where M is the mass of a proton when the

electron mass is taken as 1. This wave function helped a lot. With n = 10, we [18] obtained for
615 terms E =−1.194277909 Ry for H+

2 , compared to −1.194278126 Ry obtained by Frolov and
−1.197572175 Ry for D+

2 compared to −1.197577413 Ry obtained by Bishop and Chung [20].
We [18] also calculated expectation values of various parameters for H+

2 and D+
2 . We [8]

calculated the dipole polarizabilities for H+
2 and D+

2 , using the expression given below

α1 = 4
µ2(1+µ)2

∑
p

|〈0|zA + zB|p〉|2
Ep −E0

a3
0. (3.3)

The L = 1 states are represented by p. In Table 8, we give convergence of the polarizabilities as
the number of p states is increased.

In Table 9, we compare our results with the results of other calculations. We find that
the present calculations treating the system as a three-body system gives polarizabilities which
agree with the experimental results.
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Table 8. Convergence of dipole polarizabilities for H+
2

and D+
2 with the number of terms, Np is

increased

Np α1(H+
2 ) α1(D+

2 )

120 3.149851 3.012308

165 3.159469 3.037802

220 3.164864 3.054261

286 3.167134 3.060808

364 3.167953 3.067089

Table 9. Polarizabilities of H+
2 and D+

2

Method α1(H+
2 ) α1(D+

2 )

Experimenta 3.1681(7) 3.0712(7)

Born-Oppenheimerb 3.1713 3.0731

Present 3.1680 3.061

Finite-Elementc 3.1682 3.0714(4)

aRef. [31]; bRefs. [1,19]; cRef. [41]

4. Muon-Catalyzed Fusion
Long ago it was thought that the fusion reaction could be used to generate energy:

[t dµ]→α+µ+n+17.58 MeV kinetic energy. (4.1)

Binding energies of various muonic molecules are required to study the fusion processes.
In Table 10, we [5] give binding energies of the rotational state J and vibrational state ν of
muonic molecules.

Table 10. Binding energies (eV) for various muonic molecules with quantum numbers (Jν)

Molecule (Jν)= (00) (01) (10) (11)

ppµ 253.1523322 107.2659714

pdµ 221.5494096 97.4981602

ptµ 213.8401794 99.1265014

ddµ 325.0735402 35.8443605 226.6816786 1.9748717

dtµ 319.139722259 34.8344912 232.4715935 0.6601721

ttµ 362.9097696 83.7712165 289.1417829 45.2058563

5. Positronium Negative Ion
Since all the particles have the same mass, we [7] using the Hamiltonian given in eq. (3.2) to
calculate binding energy of Ps− ion. We give in Table 11 binding energies for different number
of terms in the wave function. We used the binding energy to calculate photodetachment of
the positronium negative ion.

Table 11. Binding energy of Ps− ion

Number of terms Binding energy (Ry)

120 0.024009966

165 0.024010079

220 0.024010113
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6. Hyperfine Structure of the Lithium Ground State
Hyperfine structure depends on the delta function δ(r). There have been very accurate
variational calculations of the energy of the ground state of lithium by Larsson [33], using a
100-term Hylleraas type wave function. Using this type of wave function and delta function,
value of the Fermi-contact term has been calculated. Because of the delta function in the matrix
element, value of the wave function at r = 0 is very important. However, if a global operator
(Drachman and Sucher [23, 43]) instead of the delta function is used, even a configuration
interaction type wave function can yield accurate results for the Fermi-contact term (Bhatia
and Sucher [4]). We define

f = 4π
〈
ψ

∣∣∣∑i gz(i)
∣∣∣ψ〉

. (6.1)

In the above equation

g(i)=∑
i
δ(r i). (6.2)

We define

f ′ = 4π
〈
ψ̄

∣∣∣∑i g′
z|ψ̄

〉
. (6.3)

We have replaced the exact ψ by an approximate ψ̄, and gz by g′
z , where

g′
z =

∑
i

D i, , (6.4)

D i = m
2π

∂V
∂r i

− l i

2πr2
i
. (6.5)

In the above, l⃗ i = r⃗ i × p⃗i and

V =∑
i

(
− Z

r i

)
+∑

i< j 1/r i j. (6.6)

In Table 12, we give a comparison of two ways of calculating the Fermi contact term.

Table 12. Energy values and Fermi contact term against N , the number of terms in the configuration
interaction wave function

N Energy E(au) fN f ′N
3 −7.442225 3.2852 3.1177
6 −7.445404 3.0018 2.8608

10 −7.445413 3.0057 2.8644
16 −7.446614 3.0339 2.8855
20 −7.469530 3.0001 2.8352
24 −7.469904 3.0003 2.8261
34 −7.470761 3.0539 2.8782
40 −7.473393 3.0717 2.9014

100-term Hylleraas wave functiona −7.479025 2.906 —
Experimentb −7.478069 2.9062

aLarsson [33]; Kusch and Taub [32]

We see that the use of the global identity gives accurate results even for an approximate
wave function.
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7. Continuum Functions
Continuum or scattering functions are required to calculate elastic scattering, momentum
transfer, spin-flip cross sections. In addition to these, they are also required to calculate
excitation and photon absorption cross sections. The simplest approximation is a static
approximation:

Ψ(⃗r1, r⃗2)= u(⃗r1)φ0(⃗r2). (7.1)

In eq. (7.1), r⃗1 and r⃗2 are the distances of the incident and bound electrons from the nucleus,
u(⃗r1) is the scattering function and φ0(⃗r2) is the target function. Exchange between the identical
particle is important. Therefore, eq. (7.1) must be modified accordingly:

Ψ(⃗r1, r⃗2)= u(⃗r1)φ0(⃗r2)± (1↔ 2). (7.2)

The plus sign refers to the singlet states and the minus sign refers to the triplet states. In
eqs.(7.1), (7.2),

u(⃗r i)= u(r i)
r i

YL0(Ω1), (7.3)

where Ω1 is the solid angle, measured in radians and expressed in terms of spherical polar
angles θ1 and ϕ1. The ground state function is given by

φ0(⃗r2)= 2e−r2Y00(Ω2). (7.4)

The scattering function u is of the incident particle is obtained from∫
YL0(Ω1)φ0(⃗r2)|H−E|ΨdΩ1dr⃗2 = 0. (7.5)

Morse and Allis [34] carried out the exchange approximation calculations in 1933. Assuming
that the nucleus is of infinite mass and remains fixed so that the recoil of the nucleus can be
neglected, the Hamiltonian H from eq. (1.3) and energy E (H and E in Rydberg units) are given
by

H =−∇2
1 −∇2

2 −
2Z
r1

− 2Z
r2

+ 2
r12

, (7.6)

E =−Z2 +k2. (7.7)

Z is the nuclear charge and k is the momentum of the incident electron. Using eq. (7.5), we get
the equation for the scattering function[

d2

dr2 − L(L+1)
r2 +Vd(r)+k2

]
u(r)±4Z2

[
(Z2 +k2)VL(r)δL0 − 2

2L+1
yL(r)

]
= 0, (7.8)

Vd(r)= 2(Z−1)
r

+2e−Zr
(
1+ 1

r

)
, (7.9)

yL(r)= 1
rL

∫ r

0
xL+1φ0(x)uL(x)dx+ rL+1

∫ ∞

r
φ0(x)

uL(x)
xL dx. (7.10)

We obtain the static approximation by neglecting the exchange terms. The scattering function
behaves asymptotically like sin

(
kr− Lπ

2 +ηL
)
, where ηL is the phase shift for the incident

angular momentum L. Elastic scattering cross sections are determined as a function of phase
shifts

σL(πa2
0)= (2L+1)[3sin2(η−)+sin(η+)]/k2. (7.11)

The triplet phase shifts are indicated by η+and singlet phase shifts are indicated by η−.
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In the presence of the incident electron, the target is perturbed. Temkin [45] has shown
that using the adiabatic approximation in the first-order perturbation theory and the dipole
part of the resulting perturbed wave function that in the presence of the incident electron r1
the effective wave function of the target can be written as

Φpol (⃗r1, r⃗2)=φ0(⃗r2)− ε(r1, r2)
r2

1

u1s→p(r2)
r2

cos(θ12)p
Zπ

. (7.12)

The functions u1s→p are given by

u1s→p(r2)= e−Zr2

(
Z
2

r3
2 + r2

2

)
. (7.13)

The angle θ12 is the angle between r1 and r2. Temkin and Lamkin [44] introduced the step
function

ε(r1, r2)=
{

1, r1 > r2,
0, r1 < r2.

(7.14)

The step function ensures that the polarization takes place only when the incident electron is
outside the target electron. The scattering function is obtained from eq. (7.5) by replacing φ0(⃗r2)
in eq. (7.2) by Φpol given in eq. (7.12).

This is called the method of polarized orbitals (PO). This method has been used extensively
over the years. However, the method is not variationally correct, i.e., the phase shifts obtained
have no bounds. We would like to improve the method so that not only long-range correlations
are included but short-range correlations are also included. We would like the method to be
variationally correct. Furthermore, we want the polarization function in eq. (7.12) to be valid at
all distances r1. We, therefore, replace the step function ε(r1, r2) by a cutoff of the form

χβ(r1)= (1− e−βr1)n . (7.15)

The exponent n ≥ 3. This function gives us another nonlinear parameter β, which depends on k,
to optimize the results. Another form of a smooth cutoff is given by Shertzer and Temkin [40],

χST = 1− e−2Zr1

[
(Zr1)4

3
+ 4(Zr1)3

3
+2(Zr1)2 +2Zr1 +1

]
. (7.16)

These forms ensure that χ(r1)/r2
1 → 0 when r1 → 0. The polarized wave function is given by

Φpol (⃗r1, r⃗2)=φ0(⃗r2)− χ(r1)
r2

1

u1s→p(r2)
r2

cos(θ12)p
Zπ

. (7.17)

In eq. (7.17), the cutoff function can be of the form given in eq. (7.15) or eq. (7.16). Short-range
correlations are included by augmenting the function in eq. (7.2) as

Ψ(⃗r1, r⃗2)= u(⃗r1)Φpol (⃗r,1 r⃗2)± (1↔ 2)+∑
CiΦ

i
L (⃗r i, r⃗2). (7.18)

The correlation functionΦabove for any angular momentum L are of the Hylleraas type. They
can be written using the Euler angle decomposition [35]. The equation for the scattering is
obtained from∫

dΩ1dr⃗2YL0Φ
pol (⃗r1, r⃗2)|H−E|Ψ(⃗r1, r⃗2)= 0. (7.19)

The resulting equation for the scattering function is very complicated. It is given in [14]. We call
the present formalism a hybrid theory. In Table 13, we compare the phase shifts obtained for
the scattering of an electron from a hydrogen atom using the method of polarized orbitals and
the hybrid theory.
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18 Variational Principles and Their Applications: A. K. Bhatia

Table 13. Singlet and triplet phase shifts η (radians) for e-H scattering

Incident k PO Hybrid theory PO Hybrid theory

Singlet phase shifts Triplet phase shifts
a0 5.8 6.00092 1.9 1.900

0.1 2.553 2.55372 2.949 2.93856

0.2 2.144 2.06699 2.732 2.71751

0.3 1.750 1.69853 2.519 2.49987

0.4 1.469 1.41561 2.320 2.29465

0.5 1.251 1.20112 2.133 2.10544

0.6 1.04110 1.93322

0.7 0.930 0.93094 1.815 1.77998

0.8 0.853 0.88768 1.682 1.64425
a k = 0 results represent the scattering lengths

The scattering length a given in the above table is defined as

lim
k→0

kcotη=−1/a. (7.20)

We see that phase shifts obtained by two methods are close, except that the phase shifts
obtained using the hybrid theory are lower than the exact phase shifts, that is they have lower
bounds to the exact phase shifts. There are other methods like the Kohn variational principle,
the exterior complex scaling method, close-coupling approximation, and R-matrix formalism.
The last method has been extensively used in atomic as well as in molecular physics. In this
approach a radius a is defined such that all complications are considered within this radius and
simple approximations for functions are used outside this radius. This simplifies the calculations
providing accurate results. We cannot discuss all these methods in one article.

Hybrid theory has been used for scattering of positrons, annihilation cross sections, and
positronium formation. In Table 10, we give phase shifts for scattering of positrons from
hydrogen atoms. These phase shifts, including the contribution from the long-range and short-
range correlations, are lower than the exact phase shifts.

Table 14. Positron-hydrogen scattering phase shifts(radians)

K S-wave P-wave

0.1 0.14918 0.008871

0.2 0.18803 0.032778

0.3 0.16831 0.06964

0.4 0.12083 0.10047

0.5 0.06278 0.13064

0.6 0.00903 0.15458

0.7 −0.04253 0.17806

Resonance parameters of He and Li+ have been obtained by calculating phase shifts in
the resonance region [10] and fitting these phase shifts to the Breit-Wigner form to obtain the
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Variational Principles and Their Applications: A. K. Bhatia 19

resonance parameters for any resonance,

ηcal(E)= η0 + AE+ tan−1 0.5Γ
(ER −E)

, (7.21)

E = k2 is the incident energy, ηcal are the calculated phase shifts, η0, A,Γ, and ER are the fitting
parameters. ER and Γ represent the resonance position and resonance width. The resonance
parameters obtained by this method agree well with those obtained using the Feshbach
formalism.

8. Opacity of the Sun’s Atmosphere
Opacity of the solar medium is due to Thomson scattering, bound-bound transitions,
photodetachment (bound-free) or free-free transitions. In 1939, it was suggested by Wildt [47]
that the important source of opacity in the solar atmosphere could be due the photodetachment
(bf) of negative hydrogen ions:

hν+H− → e+H. (8.1)

There are also free-free transitions which account for the continuous spectrum of the Sun

hν+ e−+H → e−+H. (8.2)

In eq. (8.1) H− can be replaced by Ps−, and free-free transitions due to electrons in eq. (8.2) can
also be due to positrons. We also consider photodetachment of the negative positronium ions
and free-free transitions due to positrons. The contribution due to the photodetachment of Ps−

and free-free transitions due to positrons to the opacity of the Sun and stellar medium have not
been considered earlier. In Table 15, we give some results for comparison. The cross sections
have been Maxwellian averaged at a temperature of 6300 K.

Table 15. Comparison of bound-free (bf) and free-free cross sections (cm2) for electrons and positrons at
T = 6300 K

Electrons Positrons
λ(Å) σ(bf ) σ f f σ(bf )+σ f f σ(bf ) σ f f σ(bf )+σ f f

3505 2.29(−17) 4.28(−20) 2.29(−17) 9.95(−18) 4.14(−21) 9.95(−18)
7594 4.10(−17) 1.88(−19) 4.17(−17) 3.17(−17) 1.56(−20) 3.17(−17)
9113 4.13(−17) 2.69(−19) 4.16(−17) 4.17(−17) 2.15(−20) 4.17(−17)

15188 7.05(−18) 7.45(−19) 7.80(−18) 8.96(−17) 5.38(−20) 8.97(−17)
22783 0.00 1.68(−18) 1.68(−18) 1.65(−16) 1.13(−19) 1.65(−16)
30377 0.00 2.99(−18) 2.99(−18) 2.53(−16) 1.96(−19) 2.53(−16)
44565 0.00 6.74(−18) 6.74(−18) 4.64(−16) 4.30(−19) 4.64(−16)
91130 0.00 2.70(−15) 2.70(−15) 1.30(−15) 1.68(−18) 1.30(−15)

9. Photoionization
The derivation of the photoabsorption cross section is given in [15]. In the length form and in
the dipole approximation for the process in eq. (8.2), it is given by

σ(a2
0)= 4παk(I +k2)|〈Ψ f |z1 + z2|Φ〉|2. (9.1)

In the above equation, α= 1/137.036 is the fine-structure constant, I is the ionization potential,
zi = r i cos(θi) are the dipole transition operators, and k is the momentum of the outgoing
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electron. The function Φ represents the bound state wave function of the system being photo-
detached or photoionized, and Ψ is the wave function of the outgoing electron and the remaining
atom or ion. In Table 16, we [13] give cross sections of the photodetachment of H−, without the
short-range correlations. In Figure 1, we indicate these cross sections, as well as those obtained
including the short-range correlations. We see that the short-range correlations have some
effect on the cross sections. We also give in the figure results obtained using the Ohmura and
Ohmura approach [36].

Table 16. Photodetachment cross sectionsa in (Mb) of H−

K Cross section k Cross section

0.01 0.0245 0.26 38.3850

0.02 0.1959 0.3 34.9684

0.03 0.6444 0.4 24.2537

0.04 1.4736 0.5 15.8692

0.05 2.7480 0.6 10.4924

0.06 4.4914 0.7 7.1258

0.07 6.6844 0.74 6.1530

0.1 15.2365 0.8 4.9768

0.2 38.3688 0.8544 4.1421

0.23 39.4354 0.8631 4.0224

0.24 39.2882 0.8660 3.9846

0.25 38.9121
aCross sections without correlations

Figure 1. Photodetachment of negative hydrogen ion. The lowest curve is without the short-range cross
sections given in Table 16. The middle curve includes short-range correlations. The top curve
represents the cross sections are obtained by Ohmura and Ohmura [36] using the effective
range theory
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Table 17. Photoionization cross sections (Mb) for the ground state of He obtained with correlations and
a comparison with the results of the R-matrix and experiments

K Hybrid theory [13] R-matrix [35] Experiment [46] Experiment [39]

0.1 7.3300 7.295 7.51 7.44

0.2 7.1544 7.115 7.28 7.13

0.3 6.8716 6.838 6.93 6.83

0.4 6.4951 6.474 6.49 6.46

0.5 6.0461 6.006 5.99 6.02

0.6 5.5925 5.535 5.46 5.55

0.7 5.0120 4.995 4.92 5.04

0.8 4.4740 4.482 4.38 4.51

0.9 3.9649

1.0 3.4654 3.476 3.38 3.48

1.1 3.0206 3.023 2.91 3.00

1.3 2.2561 2.271 2.17 2.19

1.4 1.9821 1.943 1.87 1.89

1.5 1.6817

1.6 1.6329

Figure 2. Photoionization of He. A comparison of cross sections calculated using the hybrid theory [13]
and R-matrix approximation [35] with the experimental results [39,46]

Photoionization cross sections of He atom have also been calculated using the hybrid
theory [13]. These results along with those using the R-matrix formalism [35] and experimental
results [39, 46] are given in Table 17. Figure 2 shows a comparison of these results. These
results agree with each other, and it is not possible to distinguish various curves. It shows
that the present formulation of the hybrid theory gives accurate results. Similar calculations
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have been carried out for Li+ and for excited states of He and Li+. Cross sections for radiative
attachments have also been calculated. Radiative attachment is given by

e−+H → hν+H− . (9.2)

10. Excitation
Excitation of S-states by electron and positron impact of atomic hydrogen have been calculated
using the hybrid theory for the initial state and plane wave for the final state. The cross section
is given by

σ= k f

ki

∫
|T f i|2dΩ . (10.1)

Here ki and k f are the initial and final momenta and T f i is a matrix element given by

T f i =−(1/4π)〈ψ f |V |Ψi〉. (10.2)

In the above expression,

V =−2z
r1

+ 2
r12

. (10.3)

Excitation cross sections of atomic hydrogen 2S state are given in by electron-impact in [12] and
by positron-impact in [16]. They are shown in Figure 3. We see that the positron-impact cross
sections are higher than those by electron-impact. Cross sections by positron-impact excitation
of NS, NP, and ND states, N = 2 to 6, are given in [17]. Cross sections for excitations to the NS
states (N = 2 to 6) by electron impact are given in [11].

Figure 3. Excitation cross sections ((πa2
0) of 2S state of atomic hydrogen by positron impact (upper

curve) and electron impact (lower curve)

11. Conclusions
We have mentioned variational principles as applied to calculations of eigenvalues and
continuum functions. It is important to have appropriate wave functions of the systems as in
the case of H+

2 and D+
2 . In some cases, the interaction terms should be chosen appropriately
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as in the calculation of hyperfine structure of lithium. We indicated that proper formalism of
scattering theory is necessary, so that it is variationally correct. Then we get phase shifts having
a lower limit to the exact phase shifts. We can also then reliably assume the correctness of the
continuum functions which we have used to calculate photoabsorption cross sections, as well
excitation cross sections. There are lots of details which could not be given. We expect the reader
to consult the original publications (references appear below). Up to now, the hybrid theory has
been applied to the scattering when there is a single electron in the target. It is shown that it
gives accurate results. Perhaps, it would encourage some readers to try to extend the hybrid
theory to multielectron systems.
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