QSPR Analysis of Novel Topological Index Based on Proximity Degree

Authors

DOI:

https://doi.org/10.26713/cma.v15i4.3282

Keywords:

Proximity degree, QSPR analysis, Octane isomers, Heptane isomers

Abstract

In this article, we define a \(k\)-proximity degree and based on this distance degree, we introduce a novel topological index named Proximity Index \((\PI_k)\). By considering octane and heptane isomers, we have studied QSPR regression analysis to predict the physio-chemical properties and chemical applicability of the index.

Downloads

Download data is not yet available.

References

I. H. Agustin, A. S. Maragadam, Dafik, V. Lokesha and M. Manjunath, Semi-total point graph of neighbourhood edge corona graph of G and H, European Journal of Pure and Applied Mathematics 16(2) (2023), 1094 – 1109, DOI: 10.29020/nybg.ejpam.v16i2.4513.

M. Aouchiche and V. Ganesan, Adjusting geometric–arithmetic index to estimate boiling point, MATCH Communications in Mathematical and in Computer Chemistry 84 (2020), 483 – 497, URL: https://match.pmf.kg.ac.rs/electronic_versions/Match84/n2/match84n2_483-497.pdf.

A. T. Balaban, D. Mills, O. Ivanciuc and S. C. Basak, Reverse Wiener indices, Croatica Chemica Acta 73(4) (2000), 923 – 941, URL: https://hrcak.srce.hr/file/194901.

B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, International Journal of Applied Engineering Research 14(1) (2019), 325 – 342, DOI: 10.37622/IJAER/14.1.2019.325-342.

D. Bonchev, O. Mekenyan and N. Trinajstic, Isomer discrimination by topological information approach, Journal of Computational Chemistry 2(2) (1981), 127 – 148, DOI: 10.1002/jcc.540020202.

V. Božovic, Kovijanic, Ž. K. Vukicevic, G. Popivoda, R. Škrekovski and A. Tepeh, On the maximal RRR index of trees with many leaves, MATCH Communications in Mathematical and in Computer Chemistry 83 (2020), 189 – 203, URL: https://match.pmf.kg.ac.rs/electronic_versions/Match83/n1/match83n1_189-203.pdf.

W. Carballosa, D. Pestana, J. M. Sigarreta and E. Tourís, Relations between the general sum connectivity index and the line graph, Journal of Mathematical Chemistry 58 (2020), 2273 – 2290, DOI: 10.1007/s10910-020-01180-9.

R. Cruz, A. D. Santamaría-Galvis and J. Rada, Extremal values of vertex-degree-based topological indices of coronoid systems, International Journal of Quantum Chemistry 121(6) (2020), e26536, DOI: 10.1002/qua.26536.

I. Gutman and N. Trinajsti´c, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17(4) (1972), 535 – 538, DOI: 10.1016/0009-2614(72)85099-1.

A. Hasan, M. H. A. Qasmi, A. Alsinai, M. Alaeiyan, M. R. Farahani and M. Cancan, Distance and degree based topological polynomial and indices of x-level wheel graph, Journal of Prime Research in Mathematics 17 (2021), 39 – 50.

D. M. Hawkins, S. C. Basak and D. Mills, Assessing model fit by cross-validation, Journal of Chemical Information and Computer Sciences 43 (2003), 579 – 586, DOI: 10.1021/ci025626i.

D. M. Hawkins, S. C. Basak and X. Shi, QSAR with few compounds and many features, Journal of Chemical Information and Computer Sciences 41 (2001), 663 – 670, DOI: 10.1021/ci0001177.

R. Huang, A. Mahboob, M. W. Rasheed, S. M. Alam and M. K. Siddiqui, On molecular modeling and QSPR analysis of lyme disease medicines via topological indices, The European Physical Journal Plus 138 (2023), article number 243, DOI: 10.1140/epjp/s13360-023-03867-9.

E. V. Konstantinova, The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems, Journal of Chemical Information and Computer Sciences 36 (1996), 54 – 57, DOI: 10.1021/ci9502461.

X. Kuang, M. A. Green, H. Niu, P. Zajdel, C. Dickinson, J. B. Claridge, L. Jantsky and M. J. Rosseinsky, Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure, Nature Materials 7 (2008), 498 – 504, DOI: 10.1038/nmat2201.

F. Li, X. Li and H. Broersma, Spectral properties of inverse sum indeg index of graphs, Journal Mathematical Chemistry 58 (2020), 2108 – 2139, DOI: 10.1007/s10910-020-01170-x.

W. Lin, D. Dimitrov and R. Škrekovski, Complete characterization of trees with maximal augmented Zagreb index, MATCH Communications in Mathematical and in Computer Chemistry 83 (2020), 167 – 178, URL: https://match.pmf.kg.ac.rs/electronic_versions/Match83/n1/match83n1_167-178.pdf.

M. Manjunath, V. Lokesha, Suvarna and S. Jain, Bounds for the topological indices of ℘ graphs, European Journal of Pure and Applied Mathematics 14(2) (2021), 340 – 350, DOI: 10.29020/nybg.ejpam.v14i2.3715.

S. Mondal, A. Dey, N. De and A. Pal, QSPR analysis of some novel neighbourhood degree-based topological descriptors, Complex & Intelligent Systems 7 (2021), 977 – 996, DOI: 10.1007/s40747-020-00262-0.

M. Randic and N. Trinajstic, Viewpoint 4 – Comparative structure-property studies: the connectivity basis, Journal of Molecular Structure: THEOCHEM 284(3) (1993), 209 – 221, DOI: 10.1016/0166-1280(93)87005-X.

Z. Wang, Y. Mao, Y. Li and B. Fortula, On relations between Sombor and degree based indices, Journal of Applied Mathematics and Computing 68 (2022), 1 – 17, DOI: 10.1007/s12190-021-01516-x.

H. Wiener, Structural determination of paraffin boiling points, Journal of the American Chemical Society 69 (1947), 17 – 20, DOI: 10.1021/ja01193a005.

P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides and G. D. Stucky, Hierarchically ordered oxides, Science 282(5397) (1998), 2244 – 2246, DOI: 10.1126/science.282.5397.2244.

Downloads

Published

15-12-2024
CITATION

How to Cite

Kumar, D. S., Ranjini, P. S., Haque, M. S., & Lokesha, V. (2024). QSPR Analysis of Novel Topological Index Based on Proximity Degree. Communications in Mathematics and Applications, 15(4), 1395–1408. https://doi.org/10.26713/cma.v15i4.3282

Issue

Section

Research Article