Exploring Explainable AI (EXAI) – An Emerging Trend in Healthcare Sector

Authors

DOI:

https://doi.org/10.26713/cma.v15i4.3279

Keywords:

Artificial Intelligence (AI), Machine Learning (ML), Healthcare sector, Explainable AI (EXAI), Trend, Business, Non-communicable diseases

Abstract

Industry 4.0 and COVID-19 drove businesses to adopt AI/ML amid VUCA, advancing toward Industry 5.0. Explainable AI (EXAI) fosters trust in healthcare’s digital shift, enhanced remote care, and chronic-disease management, ushering smarter decisions and better patient outcomes. The authors used snowball sampling via Google Forms, surveying hospitals, practitioners, vendors, and customers on healthcare technology adoption. Data were visualized and analyzed descriptively. Explainable AI (EXAI) shows significant promise in managing NCDs, with ML tools aiding better diagnosis and treatment. Once EXAI is integrated nationwide in healthcare, Indian businesses will pivot, analyzing new challenges, enabling data-driven solutions that enhance well being and innovation.

Downloads

Download data is not yet available.

References

A. Adadi and M. Berrada, Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI), IEEE Access 6 (2018), 52138 – 52160, DOI: 10.1109/ACCESS.2018.2870052.

S. Agrawal, N. Sharma and S. Bhatnagar, Education 4.0 to Industry 4.0 vision: Current trends and overview, in: Recent Advances in Smart Manufacturing and Materials, R. Agrawal, J. K. Jain, V. S. Yadav, V. K. Manupati and L. Varela (editors), Lecture Notes in Mechanical Engineering series, Springer, Singapore, (2021), DOI: 10.1007/978-981-16-3033-0_45.

N. M. AlQashouti, M. Yaqot and B. C. Menezes, Online learning and teaching during the COVID-19 pandemic in higher education in Qatar, Sustainability 16(6) (2024), 2265, DOI: 10.3390/su16062265.

J. Amann, A. Blasimme, E. Vayena, D. Frey and V. I. Madai, Explainability for artificial intelligence in healthcare: a multidisciplinary perspective, BMC Medical Informatics and Decision Making 20 (2020), Article number: 310, DOI: 10.1186/s12911-020-01332-6.

N. K. Bhasin and K. Gulati, A study of the readiness of Indian banks to absorb COVID-19’s impact through new emerging technologies and strategies for competitive advantage, in: E-Collaboration Technologies and Strategies for Competitive Advantage Amid Challenging Times, J. Zhao and J. Richards (editors), IGI Global Scientific Publishing, pp. 50 – 75, (2021), DOI: 10.4018/978-1-7998-7764-6.ch003.

C. Cath, S. Wachter, B. Mittelstadt, M. Taddeo and L. Floridi, Artificial Intelligence and the ‘Good Society’: The US, EU, and UK approach, Science and Engineering Ethics 24 (2018), 505 – 528, DOI: 10.1007/s11948-017-9901-7.

A. Chaddad, J. Peng, J. Xu and A. Bouridane, Survey of explainable AI techniques in healthcare, Sensors 23(2) (2023), 634, DOI: 10.3390/s23020634.

M. Chandra, K. Kumar, P. Thakur, S. Chattopadhyaya, F. Alam and S. Kumar, Digital technologies, healthcare and COVID-19: Insights from developing and emerging nations, Health and Technology 12(2) (2022), 547 – 568, DOI: 10.1007/s12553-022-00650-1.

R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo and F. De Felice, Artificial intelligence and machine learning applications in smart production: Progress, trends, and directions, Sustainability 12(2) (2020), 492, DOI: 10.3390/su12020492.

A. Das and P. Rad, Opportunities and challenges in explainable artificial intelligence (XAI): A survey, arXiv preprint arXiv:2006.11371, (2020), 24 pages, DOI: 10.48550/arXiv.2006.11371.

L. Divya and H. Mallik, Application of Artificial Intelligence in the payment system at shopping malls in Mysore city, International Journal of Research and Analytical Reviews 9(2) (2022), 96 – 103, URL: https://www.ijrar.org/papers/IJRAR22B1011.pdf.

R. Geetha and D. B. Reddy, Recruitment through Artificial Intelligence: A conceptual study, International Journal of Mechanical Engineering and Technology 9(7) (2018), 63 – 70, URL: https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_9_ISSUE_7/IJMET_09_07_007.pdf.

M. Ghassemi, L. Oakden-Rayner and A. L. Beam, The false hope of current approaches to explainable artificial intelligence in healthcare, The Lancet Digital Health 3(11) (2021), e745 – e750, DOI: 10.1016/S2589-7500(21)00208-9.

B. M. Gupta and S. M. Dhawan, Artificial intelligence research in India: A scientometric assessment of publications output during 2007-16, DESIDOC Journal of Library & Information Technology 38(6) (2018), 416 – 422, DOI: 10.14429/djlit.38.6.12309.

J. K. Hentzen, A. Hoffmann, R. Dolan and E. Pala, Artificial intelligence in customer-facing financial services: A systematic literature review and agenda for future research, International Journal of Banking 40(6) (2022), 1299 – 1336, DOI: 10.1108/IJBM-09-2021-0417.

T. Irkhede, A. Goswami, K. Sheikh, N. Gavnekar, P. Patle and P. Khadatkar, Disease prediction system using artificial intelligence, International Journal of Research and Analytical Reviews 7(1) (2020), 128 – 133, URL: https://ijrar.org/papers/IJRAR2001870.pdf.

K. Kangra and J. Singh, Explainable artificial intelligence: Concepts and current progressions, in: Explainable Edge AI: A Futuristic Computing Perspective, A.E. Hassanien, D. Gupta, A. J. Singh and A. Garg, Vol. 1072, Springer, Cham., (2023), DOI: 10.1007/978-3-031-18292-1_1.

N. Kaur, S. L. Sahdev, M. Sharma and L. Siddiqui, Banking 4.0: ‘The influence of artificial intelligence on the banking industry & How AI is changing the face of modern day banks, International Journal of Management 11(6) (2020), 577 – 585, URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3661469.

P. L. Lau, M. Nandy and S. Chakraborty, Accelerating UN sustainable development goals with AI-driven technologies: A systematic literature review of women’s healthcare, Healthcare 11(3) (2023), Article number 401, DOI: 10.3390/healthcare11030401.

N. Liu, P. Shapira and X. Yue, Tracking developments in artificial intelligence research: Constructing and applying a new search strategy, Scientometrics 126 (2021), 3153 – 3192, DOI: 10.1007/s11192-021-03868-4.

H. W. Loh, C. P. Ooi, S. Seoni, P. D. Barua, F. Moinavi and U. R. Acharys, Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022), Computer Methods and Programs in Biomedicine 226 (2022), 107161, DOI: 10.1016/j.cmpb.2022.107161.

H. A. Madni, M. Umer, A. Ishaq, N. Abuzinadah, O. Saidani, S. Alsubai, M. Hamdi and I. Ashraf, Water-quality prediction based on H2O AutoML and explainable AI techniques, Water 15(3) (2023), 475, DOI: 10.3390/w15030475.

A. Mohiuddin and Z. Saharin, Explainable Artificial Intelligence in sustainable smart healthcare, in: Explainable Artificial Intelligence for Cyber Security, Studies in Computational Intelligence series, M. Ahmed, S. R. Islam, A. Anwar, N. Moustafa, A. S. K. Pathan (editors), Vol. 1025, Springer, Cham., DOI: 10.1007/978-3-030-96630-0_12.

M. Nagahisarchoghaei, N. Nur, L. Cummins, N. Nur, M. M. Karimi, S. Nandanwar, S. Bhattacharyya and S. Rahimi, An empirical survey on explainable AI technologies: Recent trends, use-cases, and categories from technical and application perspectives, Electronics 12(5) (2023), 1092, DOI: 10.3390/electronics12051092.

J. J. Nagvadia, Factors Influencing Consumer’s Online Buying Behavior: an Empirical Study, Ph.D. Thesis, Department of Management, Gujarat Technological University, Ahmedabad, (2021).

U. Pawar, D. O’Shea, S. Rea and R. O’Reilly, Incorporating explainable artificial intelligence (XAI) to aid the understanding of machine learning in the healthcare domain, in: Proceedings of The 28th Irish Conference on Artificial Intelligence and Cognitive Science Dublin (December 7-8, 2020), L. Longo, L. Rizzo, E. Hunter and A. Pakrashi (editors), Technological University Dublin, School of Computer Science, Dublin, Republic of Ireland, pp. 169 – 180 (2020), URL: https://ceur-ws.org/Vol-2771/AICS2020_paper_62.pdf.

F. Pemer, Enacting professional service work in times of digitalization and potential disruption, Journal of Service Research 24(2) (2020), 249 – 268, DOI: 10.1177/1094670520916801.

E. Rajkumar, A. Gopi, A. Joshi, A. E. Thomas, N. M. Arunima, G. S. Ramya and J. Abraham, Applications, benefits and challenges of telehealth in India during COVID-19 pandemic and beyond: a systematic review, BMC Health Services Research 23(1) (2023), Article number 7, DOI: 10.1186/s12913-022-08970-8.

A. Raza, K. P. Tran, L. Koehl and S. Li, Designing ECG monitoring healthcare system with federated transfer learning and explainable AI, Knowledge-Based Systems 236 (2022), 107763, DOI: 10.1016/j.knosys.2021.107763.

W. Samek and K.-R. Müller, Towards explainable artificial intelligence, in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, W. Samek, G. Montavon, A. Vedaldi, L. Hansen and M. R. Müller (editors), Lecture Notes in Computer Science, Vol. 11700, Springer, Cham., (2019), DOI: 10.1007/978-3-030-28954-6_1.

D. Saraswat, P. Bhattacharya, A. Verma, V. K. Prasad, S. Tanwar, G. Sharma, P. N. Bokoro and Ravi Sharma, Explainable AI for Healthcare 5.0: Opportunities and challenges, IEEE Access 10 (2022), 84486 – 84517, DOI: 10.1109/ACCESS.2022.3197671.

K. Sekaran, R. P. Varghese, M. Gopikrishnan, A. M. Alsamman, A. El Allali, H. Zayed and C. G. P. Doss, Unraveling the dysbiosis of vaginal microbiome to understand cervical cancer disease etiology – An explainable AI approach, Genes 14(4) (2023), 936, DOI: 10.3390/genes14040936.

P. N. Srinivasu, N. Parvathaneni, R. J. Sandhya and R. H. Jhaveri and R. Raut, From blackbox to explainable AI in healthcare: Existing tools and case studies, Mobile Information Systems 2022(1) (2022), Article ID 8167821, DOI: 10.1155/2022/8167821.

N. Soni, E. K. Sharma, N. Singh and A. Kapoor, Impact of artificial intelligence on businesses: From research, innovation, market deployment to future shifts in business models, arXiv preprint arXiv:1905.02092 (2019), 38 pages, DOI: 10.48550/arXiv.1905.02092.

M. Stierle, J. Brunk, S. Weinzierl, S. Zilker, M. Matzner and J. Becker, Bringing light into the darkness – A systematic literature review on explainable predictive business process monitoring techniques, in: Proceedings of the ECIS’2021: Research-in-Progress Papers, Article 8, (2021), URL: https://aisel.aisnet.org/ecis2021_rip/8/.

N. Taimoor and S. Rehman, Reliable and resilient AI and IoT-based personalised healthcare services: A survey, IEEE Access 10 (2022), 535 – 563, DOI: 10.1109/ACCESS.2021.3137364.

I. Tasin, T. U. Nabil, S. Islam and R. Khan, Diabetes prediction using machine learning and explainable AI techniques, Healthcare Technology Letters 10(1-2) (2023), 1 – 10, DOI: 10.1049/htl2.12039.

Y. Xu, C.-H. Shieh, P. van Esch and I. L. Ling, AI customer service: Task complexity, problemsolving ability, and usage intention, Australasian Marketing Journal 28(4) (2020), 189 – 199, DOI: 10.1016/j.ausmj.2020.03.005.

S. Zhou, R. Zhao, S. Yuan, M. Ding and Y. Wang, Tracing the evolution of AI in the past decade and forecasting the emerging trends, Expert Systems with Applications 209 (2022), 118221, DOI: 10.1016/j.eswa.2022.118221.

Downloads

Published

15-12-2024
CITATION

How to Cite

Pal, C., Yashvanth, M., & Rao, K. S. S. (2024). Exploring Explainable AI (EXAI) – An Emerging Trend in Healthcare Sector. Communications in Mathematics and Applications, 15(4), 1353–1372. https://doi.org/10.26713/cma.v15i4.3279

Issue

Section

Research Article