Certain Classes of Meromorphically Univalent Functions Associated With Subordinaion and Inclusion Relations

Authors

  • Krisn Pratap Meena Department of Mathematics, Shri Radheshyam R. Morarka Government College (affiliated to Pandit Deendayal Upadhyaya Shekhawati University), Nawalgarh 333042, Rajasthan, India https://orcid.org/0009-0002-5528-1690
  • Indu Bala Bapna Department of Mathematics, Manikya Lal Verma Government College (affiliated to Maharshi Dayanand Saraswati University), Bhilwara 311001, Rajasthan, India https://orcid.org/0009-0003-1267-1979

DOI:

https://doi.org/10.26713/cma.v15i4.3272

Keywords:

Meromorphic functions, Hadamard product, Subordination, Univalent functions, Integral operator

Abstract

In this present paper, we introduce some new classes of Meromorphic function in punctured unit disk involving integral operator. Our concern is to study some useful characteristic properties for the above defined general integral operator with applications of meromorphic function.

Downloads

Download data is not yet available.

References

M. K. Aouf, Some inclusion relationships associated with the Komatu integral operator, Mathematical and Computer Modelling 50(9-10) (2009), 1360 – 1366, DOI: 10.1016/j.mcm.2008.10.023.

M. K. Aouf and H. M. Srivastava, New criteria for meromorphic p-valent convex functions of order α, Mathematical Sciences Research Hot-Line 1(8) (1997), 7 – 12.

P. L. Duren, Univalent Functions, 1st edition, Grundlehren der mathematischen Wissenschaften series, Vol. 259, Springer-Verlag, New York, xiv + 384 pages (1983).

A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washinton — New Jersey (1983).

A. W. Goodman, Univalent functions and nonanalytic curves, Proceedings of the American Mathematical Society 8 (1957), 598 – 601, DOI: 10.1090/s0002-9939-1957-0086879-9.

S. P. Goyal and R. Goyal, On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative operator, The Journal of the Indian Academy of Mathematics 27(2) (2005), 439 – 456.

Y. Komatu, On analytic prolongation of a family of operators, Revue d’Analyse Numérique et de Théorie de l’Approximation 32(55) (1990), 141 – 145.

K. S. Miller and B. Ross, Fractional difference calculus, in: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, pp. 139 – 152; Ellis Horwood Ser. Math. Appl., Horwood, Chichester (1989).

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Monographs and Text Books in Pure and Applied Mathematics series, Vol. 225, Marcel-Dekker, New York, (2000).

S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Mathematical Journal 28(2) (1981), 157 – 172, DOI: 10.1307/mmj/1029002507.

S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canadian Journal of Mathematics 39(5) (1987), 1057 – 1077, DOI: 10.4153/cjm-1987-054-3.

M. I. S. Robertson, On the theory of univalent functions, Annals of Mathematics 37(2) (1936), 374 – 408, DOI: https://doi.org/10.2307/1968451.

H. M. Srivastava and J. Patel, Applications of differential subordination to certain subclasses of meromorphically multivalent functions, Journal of Inequalities in Pure and Applied Mathematics 6(3) (2005), Article 88, URL: https://www.emis.de/ft/20398.

H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, Journal of Mathematical Analysis and Applications 171(1) (1992), 1 – 13, DOI: 10.1016/0022-247x(92)90373-l.

P. Vijaywargiya, On a new subclass of meromorphic multivalent functions, Lobachevskii Journal of Mathematics 29(4) (2008), 255 – 263, DOI: 10.1134/S1995080208040070.

Downloads

Published

15-12-2024
CITATION

How to Cite

Meena, K. P., & Bapna, I. B. (2024). Certain Classes of Meromorphically Univalent Functions Associated With Subordinaion and Inclusion Relations. Communications in Mathematics and Applications, 15(4), 1331–1340. https://doi.org/10.26713/cma.v15i4.3272

Issue

Section

Research Article