A Note on Multiplicative Fuzzy on BP-Algebras

Authors

  • V. Abisha PG and Research Department of Mathematics, Saiva Bhanu Kshatriya College (affiliated to Madurai Kamaraj University), Madurai, Aruppukottai 626 101, Tamil Nadu, India https://orcid.org/0009-0005-8775-1732
  • N. Kandaraj PG and Research Department of Mathematics, Saiva Bhanu Kshatriya College (affiliated to Madurai Kamaraj University), Madurai, Aruppukottai 626 101, Tamil Nadu, India https://orcid.org/0000-0002-0663-9839
  • V. Thiruveni PG and Research Department of Mathematics, Saiva Bhanu Kshatriya College (affiliated to Madurai Kamaraj University), Madurai, Aruppukottai 626 101, Tamil Nadu, India https://orcid.org/0000-0003-1492-2754

DOI:

https://doi.org/10.26713/cma.v16i2.3249

Keywords:

Absorbing subset, BP-Absorbing subset, Graded set, Multiplicative Fuzzy BP-Algebra

Abstract

Multiplicative fuzzy sets are defined by combining the membership values of the elements in a fuzzy set. This can be considered a generalization of fuzzy sets. Multiplicative fuzzy sets are useful in areas like quantum mechanics. In this paper, we define multiplicative fuzzy BP-algebras using the multiplication operation on membership functions and investigate some of their properties. Multiplicative fuzzy topological BP-algebras are also discussed.

Downloads

Download data is not yet available.

References

V. Abisha and N. Kandaraj, Topology on BP-algebras, Ratio Mathematica 49 (2023), 116 – 126, URL: https://eiris.it/ojs/index.php/ratiomathematica/article/view/116-126/pdf.

M. A. Ahmed and E. A. Ahmed, uzzy BCK-algebras, Journal of Applied Mathematics and Physics 8(5) (2020), 927 – 932, DOI: 10.4236/jamp.2020.85071.

S.-S. Ahn and J.-S. Han, On BP-algebras, Hacettepe Journal of Mathematics and Statistics 42(5) (2013), 551 – 557, URL: https://dergipark.org.tr/tr/download/article-file/86215.

S.-S. Ahn and S.-H. Kwon, Topological properties in BCC-algebras, Communications of the Korean Mathematical Society 23(2) (2008), 169 – 178, DOI: 10.4134/CKMS.2008.23.2.169.

M. Akram and K. H. Dar, On fuzzy d-Algebras, Punjab University Journal of Mathematics 37 (2005), 61 – 76, URL: https://pu.edu.pk/images/jour/akram7.pdf.

M. Annalakshmi and M. Chandramouleeswaran, Fuzzy topological subsystem on a TMalgebra, International Journal of Pure and Applied Mathematics 94(3) (2014), 439 – 449, DOI: 10.12732/ijpam.v94i3.11.

W. A. Dudeck and Y. B. Jun, Fuzzification of ideals in BCC-algebras, Glasnik Matematicki 36(56) (2001), 127 – 138, URL: https://web.math.pmf.unizg.hr/glasnik/36.1/36(1)-12.pdf.

W. A. Dudeck and X. Zhang, On ideals and congruences in BCC-algebras, Czechoslovak Mathematical Journal 48(123) (1998), 21 – 29, DOI: 10.1023/A:1022407325810.

W. A. Dudeck, Y. B. Jun and X. Zhang, On fuzzy topological BCC-algebras, Discussiones Mathematicae - General Algebra and Applications 20(1) (2000), 77 – 86, DOI: 10.7151/dmgaa.1007.

D. H. Foster, Fuzzy topological groups, Journal of Mathematical Analysis and Applications 67(2) (1979), 549 – 564, DOI: 10.1016/0022-247X(79)90043-X.

Y. Imai and K. Iseki, On axiom system of propositional calculi. XIV, Proceedings of the Japan Academy 42 (1966), 19 – 22, URL: https://www.jstage.jst.go.jp/article/pjab1945/42/1/42_1_19/_pdf/-char/ja.

M. Jansi and V. Thiruveni, Complementary role of ideals in TSBF-algebras, Malaya Journal of Matematik 8(3) (2020), 1037 – 1040, URL: https://www.malayajournal.org/articles/MJM08030052.pdf.

D. S. Lee and D. N. Ryu, Notes on topological BCK-algebras, Scientiae Mathematicae 1(2) (1998), 231 – 235, URL: https://www.jams.jp/scm/contents/Vol-1-2/1-2-17.pdf.

K. Megalai and A. Tamilarasi, Fuzzy subalgebras and fuzzy T-ideals in TM-algebras, Journal of Mathematics & Statistics 7(2) (2011), 107 – 111, DOI: 10.3844/jmssp.2011.107.111.

J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89(2) (1997), 243 – 248, DOI: 10.1016/S0165-0114(96)00096-6.

Downloads

Published

20-08-2025
CITATION

How to Cite

Abisha, V., Kandaraj, N., & Thiruveni, V. (2025). A Note on Multiplicative Fuzzy on BP-Algebras. Communications in Mathematics and Applications, 16(2), 461–469. https://doi.org/10.26713/cma.v16i2.3249

Issue

Section

Research Article