A New Robust Application for Singularly Perturbed Volterra-Integro Differential Equations

Authors

  • Derya Arslan Department of Mathematics, Bitlis Eren University, Bitlis, Turkey

DOI:

https://doi.org/10.26713/cma.v16i2.3108

Keywords:

İntegro differential equation, singularly perturbed equation, ADM (Adomian Decomposition Method), error evaluation, series solution

Abstract

In this study, we aimed to approximately solve singularly perturbed Volterra-integro differential equation with the Adomian decomposition method. The solution procedure is easy and fast. Firstly, the equation is written in operator form. Then the integral operator is applied to all sides of the equation. The series solution is obtained by applying some operations to the given equation and then converting it into a recurrence relation. Error values show that the solution results obtained for the two applied examples are very close to each other. The proposed method gives successful results with 21 and 23 iterations.

Downloads

Download data is not yet available.

References

A. S. Lodge, J. B. McLeod and J. A. A. Nohel, A nonlinear singularly perturbed Volterra

integer differential equation occurring in polymer rheology, Proceedings of the Royal Society

of Edinburgh Section A: Mathematics 80 (1978), 99-137.

J. P. Kauthen, A survey on singularly perturbed Volterra equations, Applied Numerical

Mathematics, 24 (1997), 95-114, doi:10.5555/272364.264161.

A. Jerri, Introduction to Integral Equations with Applications, New York, USA, Wiley,

(1999).

P. K. Kythe and P. Puri, Computational Methods for Linear Integral Equations, Boston,

USA, Birkhauser, (2002).

J. I. Ramos, Exponential techniques and implicit Runge-Kutta method for singularly per-

turbed Volterra integro differential equations, Neural, Parallel and Scientific Computations,

(2008), 387-404.

T. A. Burton, Volterra Integral and Differential Equations, 2nd Ed., Amsterdam, Nether-

land: Elsevier, (2005).

A. A. Salama and S. A. Bakr, Difference schemes of exponential type for singularly per-

turbed Volterra integro-differential problems, Applied Mathematical Modelling, 31 (2007),

-879.

J. I. Ramos, Piecewise-quasilinearization techniques for singularly perturbed Volterra

integro-differential equations, Applied Mathematics and Computation, 188 (2007), 1221-

, doi:10.1016/j.amc.2006.10.076.

X. Tao and Y. Zhang, The coupled method for singularly perturbed Volterra integro-

differential equations, Advances in Continuous and Discrete Models, 217 (2019), 1-16,

doi:10.1186/s13662-019-2139-8.

N. A. Mbroh, S. C. O. Noutchie and R. Y. M. Massoukou, A second order finite difference

scheme for singularly perturbed Volterra integro-differential equation, Alexandria Engineer-

ing Journal, 59 (2007), 2441-2447, doi:10.1016/j.aej.2020.03.007.

S. Sevgin, Numerical solution of a singularly perturbed Volterra integro-differential equa-

tion, Advances in Difference Equation, 2014 (2014), 1-15, doi:10.1186/1687-1847-2014-171.

E. Cimen, A computational method for Volterra integro-differential equation,

Erzincan University Journal of Science and Technology, 11 (2018), 347-352,

doi:10.18185/erzifbed.435331.

O. Yapman and G. M. Amiraliyev, A novel second-order fitted computational method

for a singularly perturbed Volterra integro-differential equation, International Journal of

Computer Mathematics, 97 (2020), 1293-1302, doi:10.1080/00207160.2019.1614565.

E. Celik and K. Tabatabaei, Solving a class of Volterra integral equation systems by the

differential transform method, International Journal of Nonlinear Science, 16 (2013), 87-91.

D. Arslan, Approximate Solution of Singularly Perturbed Problems with Numerical Inte-

gration Method, Van Y¨uz¨unc¨u Yıl ¨Universitesi Fen Bilimleri Enstit¨us¨u Dergisi, 27 (2022),

-618, doi:10.53433/yyufbed.1094184.

H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differ-

ential Equations, Berlin, Springer-Verlag, (1996).

N. N. Nefedov, A. G. Nikitin and T. A. Urazgil’dina, The Cauchy problem for a singularly

perturbed Volterra integro-differential equation, Computational Mathematics and Mathe-

matical Physics, 46 (2006), 768-775, doi:10.1134/S0965542506050046.

D. Arslan, A Uniformly Convergent Numerical Study on Bakhvalov-Shishkin Mesh for Sin-

gularly Perturbed Problem, Communications in Mathematics and Applications, 11 (2020),

–171, doi:10.26713/cma.v11i1.1349.

F. Fakir, M. C¸ akır and H. Cakir, A robust numerical technique for solving non-linear

Volterra integro-differential equations with boundary layer, Communications of the Korean

Mathematical Society, 37 (2022), 939-955, doi:10.4134/CKMS.c210261.

G. M. Amiraliyev and I. Amirali, N¨umerik Analiz Teori ve Uygulamalarla, Ankara, T¨urkiye,

Se¸ckin Yayıncılık, (2018).

E. R. Doolan, J. J. H. Miller and W. H. A. Schilders, Uniform Numerical Methods for

Problems with Initial and Boundary Layers, Dublin, Boole Press, (1980).

P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O’Riordan and G. I. Shishkin, Robust

Computational Techniques for Boundary Layers, New York, Chapman Hall/CRC, (2000).

R. E. O’Malley, Singular perturbations methods for ordinary differential equations, New

York, Springer-Verlag, (1991).

G. Adomian, A review of the decomposition method and some recent results for nonlinear

equation, Math. Comput. Model., 13 (1992).

G. Adomian, Solving Frontier Problems of Physics: The decomposition method, Kluwer

Academic Publishers, Boston, (1994).

G. Adomian and R. Rach, Analytic solution of nonlinear boundary-value problems in several

dimensions by decomposition, Journal of Mathematical Analysis and Applications, 174

(1993), 118-137, doi:10.1006/jmaa.1993.1105.

A. M. Dalal, Adomian decomposition method of Fredholm integral equation of the second

kind using Maple, Journal of Advances in Mathematics, 9 (2014), 1868-1875.

A. M. Dalal, Application of Adomian decomposition method for solving of Fredholm integral

equation of the second kind, European Journal of Science and Engineering, 9 (2014), 1-9.

A. M. Dalal, Adomian decomposition method for solving of Fredholm integral equation of

thesecond kind using matlab, International Journal of GEOMATE, 11 (2016), 2830-2833.

D. A. Maturi and H. Malaikah, Numerical solution of system of three nonlinear Volterra

integral equation using implicit trapezoidal, Journal of Mathematics Research, 10 (2018),

-58, doi:10.5539/jmr.v10n1p44.

D. A. Maturi, The Modified decomposition method for solving Volterra integral equation

of the second kind using maple, International Journal of GEOMATE, 17 (2019), 23-28,

doi:10.21660/2019.62.4590.

H. H. Malaikah, The Adomian decomposition method for solving Volterra-

Fredholm integral equation using maple, Applied Mathematics, 11 (2020), 779-787,

doi:10.4236/am.2020.118052.

Y. Cherruault and G. Adomian, Decomposition methods: A new proof of convergence,

Mathematical and Computer modelling, 18 (1993), 103-106.

Y. Cherruault, Convergence of Adomian’s method, Kybernetes, 18 (1989), 31–38,

doi:10.1108/eb005812.

I. L. El-Kalla, Error analysis of Adomian series solution to a class of nonlinear differential

equations, Appl. Math E-Notes, 7 (2007), 214–221.

M. Cakir and D. Arslan, The Adomian decomposition method and the differential transform

method for numerical solution of multi-pantograph delay differential equations, Applied

Mathematics, 6 (2015), 1332-1343, doi:10.4236/am.2015.68126.

Published

20-08-2025
CITATION

How to Cite

Arslan, D. (2025). A New Robust Application for Singularly Perturbed Volterra-Integro Differential Equations. Communications in Mathematics and Applications, 16(2), 419–428. https://doi.org/10.26713/cma.v16i2.3108

Issue

Section

Research Article