AN ANALYTICAL APPROACH FOR A DETERMINISTIC EPIDEMIOLOGICAL MODEL - MONKEYPOX CLINICAL DISEASE

Authors

  • Jagadesan Sujatha Government Arts College for Men, Krishnagiri

Keywords:

In this study, we investigate a non-linear differential equation modeling the transmission dynamics of monkeypox. We begin with a thorough stability analysis to assess the equilibrium points of the model, providing insights into the conditions under which the disease may persist or diminish within a population. Following this, we employ the {$q\;-$} Homotopy analysis transform method ($q\;-$ HATM) to derive analytical solutions, showing its effectiveness in handling the complexities inherent in non-linear systems. Our findings reveal that while both methods yields valuable insights into the behavior of the monkeypox transmission model, $q\;-$ HATM offers greater flexibility in terms of initial conditions and non-linearity. This work contributes to the understanding of monkeypox for future research in disease modeling using advanced mathematical techniques.

Abstract

In this study, we investigate a non-linear differential equation modeling the transmission dynamics of monkeypox. We begin with a thorough stability analysis to assess the equilibrium points of the model, providing insights into the conditions under which the disease may persist or diminish within a population. Following this, we employ the {$q\;-$} Homotopy analysis transform method ($q\;-$ HATM) to derive analytical solutions, showing its effectiveness in handling the complexities inherent in non-linear systems. Our findings reveal that while both methods yields valuable insights into the behavior of the monkeypox transmission model, $q\;-$ HATM offers greater flexibility in terms of initial conditions and non-linearity. This work contributes to the understanding of monkeypox for future research in disease modeling using advanced mathematical techniques.

Downloads

Download data is not yet available.

References

M. Abdullah, A. Ahmad, N. Raza, M. Farman and M. O. Ahmad, Approximate solution

and analysis of smoking epidemic model with Caputo fractional derivatives, Int. J. Appl.

Comput. Math., 4 (5) (2018), 1-–16. doi10.1007/s40819-018-0543-5.

E. Alkunle, U. Moens, G. Nehinda and M. Okeke, Monkeypox virus in Nigeria: infection

biology, epidemiology, and evolution, viruses, 12 (11) (2020), 1257. doi10.3390/v12111257.

E. Alzahrani and A. Zeb, Stability analysis and prevention strategies of tobacco smoking

model, Bound. Value Probl., 3 (2020), 1–13. doi10.1186/s13661-019-01315-1.

A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel,

Theo. Meth. Appl. Phys. A, 476 (2017), 1-–14. doi10.1016/j.physa.2017.02.016.

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal

operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102

(2017), 285–294. doi10.1016/j.chaos.2017.03.022.

C. Bhunu and S. Mushayabasa, Modelling the transmission dynamics of pox like infections,

Int. J Appl. Math., 41 (2) (2011), 1–9.

G. Chowell, N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore and J. M. Hyman, The

basic reproductive number of Ebola and the effects of public health measures: the cases of

Congo and Uganda, J. Theor. Biol., 229 (2004), 119–-126. doi10.1016/j.jtbi.2004.03.006.

G. Hobson, J. Adamson, H. Adler, R. Firth, S. Gould and C. Houlihan, Family cluster

of three cases of monkeypox imported from Nigeria to the United Kingdom, may 2021,

Eurosurveillance, 32 (26) (2021) 2100745. doi10.2807/1560-7917.ES.2021.26.32.2100745

H. F. Huo, R. Chen and X.Y. Wang, Modelling and stability of HIV/AIDS epidemic

model with treatment, Appl. Math. Model., 40 (13) (2016), 6550–6559.

doi10.1016/j.apm.2016.01.054.

R. F. Jhonson, S. Yellayi, J. A. Cann, A. Johnson and J. Paragas, Cowpox virus infection

of cynomolgus macaques as a model of hemorrhagic smallpox, Virology, 2 (418) (2011),

–102. doi10.1016/j.virol.2011.07.013.

K. M. Owolabi and A. Atangana, Mathematical analysis and computational experiments for

an epidemic system with nonlocal and nonsingular derivative, Chaos Solitons and Fractals,

(2019), 41–49. doi10.1016/j.chaos.2019.06.001 .

V. Padmavathi, N. Magesh , K. Alagesan , M. I. Khan, S. Elattar, M. Alwetaishi, and A.

M.Galal, Numerical modeling and symmetry analysis of a pine wilt disease model using the

Mittag leffler kernel, Symmetry, 14 (2022), 1-–15. doi10.3390/sym14051067.

V. Padmavathi, A. Prakash, K. Alagesan, N. Magesh, Analysis and numerical simulation

of novel coronavirus (COVID-19) model with Mittag-Leffler Kernel. Math. Method Appl.

Sci., 44 (2) (2021), 1863–-1877. doi10.1002/mma.6886.

S. Pathak, A. Maiti, G. Samanta and Rich dynamics of an SIR epidemic model, Nonlinear

Anal. Model. Control, 15 (1) (2010), 71-–81. doi10.15388/NA.2010.15.1.14365.

A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-

Planck equation by using q-HATM, Chaos Solitons Fractals 105 (2017), 99–-110.

doi10.1016/j.chaos.2017.10.003.

A. Prakash and H. Kaur, Analysis and numerical simulation of fractional order Chan-Allen

model with Atangana-Baleanu derivatives, Chaos Solitons Fractals, 124 (2019), 134–142.

doi10.1016/j.chaos.2019.05.005 .

A. Prakash, M. Goyal, H. M. Baskonus and S. Gupta, A reliable hybrid numerical method

for a time dependent vibration model of arbitrary order, AIMS Math., 5 (2) (2020), 979–-

doi10.3934/math.2020068.

M. G. Reynolds, J. B. Doty, A. M. Mccollum, V. A. Olson and Y. Nakazawa, Monkeypox

re-emergence in Africa: a call to expand the concept and practice of one health, Expert

Rev Anti-infective Therapy, 17 (2) (2019), 39–129. doi10.1080/14787210.2019.1567330.

J. Singh, D. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic

model with Mittag-Leffler law, Math. Model. Nat. Phenom., 14 (3) (2019), 1–23.

doi10.1051/mmnp/2018068.

S. Somma, N. Akinwande and U. Chado, A mathematical model of monkeypox virus transmission

dynamics, IFE J Sci., 21 (1) (2019), 195–204. doi10.4314/ijs.v21i1.17.

J. P. Thornhill, S. Barkati, S. Walmsley, J. Rockstroh, A. Antinori and L. B. Harrison,

Monkeypox virus infection in humans across 16 countries - April - June 2022, New England

J Med., 387 (8) (2022), 679–691.

P. Veeresha, D. G. Prakasha and H. M. Baskonus, Solving smoking epidemic model of

fractional order using a modefied homotopy analysis transform method, Math. Sci., 13 (2)

(2019), 115-–128. doi10.1007/s40096-019-0284-6.

P. Veeresha, D. G. Prakasha, N. Magesh, A. John Christopher and D. U. Sarwe, Solution

for fractional potential KdV and Benjamin equations using the novel technique, J. Ocean

Eng Sci., 6 (2021), 265–275. doi10.1016/j.joes.2021.01.003 .

R. Vivancos, C. Anderson, P. Balasegaram, A. Bell and L. Bishop, Community transmission

of monkeypox in the United Kingdom, April to May 2022, Eurosurveillance, 22 (27) (2022),

–609. doi10.2807/1560-7917.es.2022.27.23.220609c.

H. M. Youssef, N. Alahamdi, M. A. Ezzat, A. A. Elbary and A. M. Shawky, A proposed

modified SEIQR epidemic model to analyze the COVID-19 spreading in Saudi Arabia,

Alexandria Eng journal, 61 (2022), 2456–2470. doi10.1016/j.aej.2021.06.095.

Published

20-08-2025

How to Cite

Sujatha, J. (2025). AN ANALYTICAL APPROACH FOR A DETERMINISTIC EPIDEMIOLOGICAL MODEL - MONKEYPOX CLINICAL DISEASE. Communications in Mathematics and Applications, 16(2). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/3052

Issue

Section

Research Article