Fermatean Picture fuzzy continuity in Fermatean Picture fuzzy topological spaces

Authors

  • Maheswari B Assistant Professor, Dr.Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu-642003.
  • Chitra V Department of Mathematics, Nallamuthu Gounder Mahalingam College, Pollachi, Tamil Nadu, India. https://orcid.org/0000-0002-9217-2816
  • Jafari S Dr.rer.nat in Mathematics (Graz University of Technology-Graz, Austria), Mathematical and Physical Science Foundation, Sidevej 5, 4200 Slagelse, Denmark. https://orcid.org/0000-0001-5744-7354

Keywords:

Fermatean Picture fuzzy set, Fermatean Picture Fuzzy topological spaces, Fermatean Picture Fuzzy continuous mapping, FPF-β connectedness

Abstract

The purpose of this paper is to define a new Picture fuzzy continuous mapping in Fermatean Picture fuzzy topological spaces and investigate its fundamental properties. In addition, we explore a key topological concept FPF- connectedness within the framework of Fermatean Picture fuzzy topology.

Downloads

Download data is not yet available.

References

Atanassov.K, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1986), 87-96. DOI:http://dx.doi.org/10.1016/S0165-0114(86)80034-3

Atanassov. K, Intuitionistic Fuzzy Sets, Theory and Applications, Heidelberg: Physica-Verlag, (1999), 1-137. DOI:https://doi.org/10.1007/978-3-7908-1870-3_1.

Atanassov. K and Gargov.G, Interval-Valued Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 31 (1989) 343- 349. DOI:http://dx.doi.org/10.1016/0165-0114(89)90205-4.

Broumi. S, Smarandache.F, Correlation Coefficient of Interval Neutrosophic set, Proceedings of the International Conference ICMERA, Bucharest, 436, 511-517, 2013. DOI:10.5281/zenodo.48908.

Broumi.S, Smarandache.F, Several Similarity Measures of Neutrosophic Sets ,Neutrosophic Sets and Systems, 1, 54–62, 2013. https://philarchive.org/rec/BROSSM-3

Cuong,B.C., Kreinovich,V. Picture Fuzzy Sets - a new concept for computational intelligence problems, Digital Object Identifier inserted by IEEE, WICT 2013. DOI:10.1109/WICT.2013.7113099.

Cuong,B.C., Picture fuzzy sets, Journal of Computer Science and Cybernetics, February 2015, 30(4). DOI:10.15625/1813-9663/30/4/5032.

Cuong,B.C., Pythagorean picture fuzzy sets, part 1- basic notions, Journal of Computer Science and Cybernetics, 35(4), 293–304, 2019. DOI 10.15625/1813-9663/35/4/13898.

H.Z.Ibrahim, Fermatean Fuzzy Topological Spaces”, Journal of Applied Mathematics & informatics, 40(1), 85-98, 2022. DOI:https://doi.org/10.14317/jami.2022.085.

Ibrahim, Hariwan Z., Al-shami, Tareq M., Elbarbary, O. G., (3,2) - Fuzzy Sets and Their Applications to Topology and Optimal Choices, Computational Intelligence and Neuroscience, 2021. DOI:10.1155/2021/1272266

Jun.Y.B and Lee.K.L, Closed cubic ideals and cubic subalgebras in BCK/BCI algebras, Appl. Math. Sci. 4, 3395–3402, 2010. https://www.researchgate.net/publication/266573578_Closed_cubic_ideals_and_cubic_-subalgebras_in_BCKBCI-algebras.

Jun.Y.B, Lee.K.J and Kang.M.S, Cubic structures applied to ideals of BCI algebras, Comput. Math. Appl. 62, 3334–3342, 2011. https://core.ac.uk/download/pdf/82560926.pdf

V.Chitra, B.Maheswari, Fermatean Picture Fuzzy Sets, Advances in Nonlinear Variational Inequalities, 28, 390-399, 2024. DOI:10.52783/anvi.v28.2441.

Wang,H., Smarandache,F., Zhang,Y.Q., & Sunderraman,R, Interval neutrosophic sets and logic: theory and applications in computing, 2005. DOI:10.5281/zenodo.8818.

X.Peng, Y.Yang, Some Results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems, 30, 1133-1160, 2015. DOI:10.1002/int.21738.

Yager.R.R, Pythagorean Fuzzy Subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada,57-61, 2013. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

Y.B.Jun, F.Smarandache, C.S.Kim. Neutrosophic Cubic Sets; New Mathematics and Natural Computation 13(1), November, 2015. https://doi.org/10.1142/S1793005717500041

Y.Yang, J.Li, Arithmetic Aggregation Operators on Type-2 Picture Fuzzy Sets and Their Application in Decision Making, Engineering Letters,31(4), EL_31_4_14, 2023. https://www.engineeringletters.com/issues_v31/issue_4/EL_31_4_14.pdf

Zadeh.L.A, Fuzzy Sets, Inform. and Control, 8, 338-353,1965. DOI:http://dx.doi.org/10.1016/S0019-9958(65)90241-X.

Published

20-08-2025

How to Cite

B, M., V, C., & S, J. (2025). Fermatean Picture fuzzy continuity in Fermatean Picture fuzzy topological spaces. Communications in Mathematics and Applications, 16(2). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/3039

Issue

Section

Research Article