Independent Perfect Secure Domination in Graphs

Authors

Keywords:

Secure dominating set, perfect secure dominating set, independent perfect secure dominating set, computational complexity

Abstract

For a graph G = (V, E), a subset Y ⊆ V will be a dominating set if each vertex y ∈ V \Y possesses a neighbour in Y . A perfect secure dominating set of G is a dominating set in which every vertex y ∈ V \Y , has a unique vertex x ∈ Y such that xy ∈ E and (Y \{x})∪ {y} is a dominating set. In addition, if Y is an independent set, then Y is an independent perfect secure dominating set of G. We have  introduced the concept of independent perfect secure domination, presented the fundamental properties of this new parameter  and investigated the independent perfect secure domination in certain classes of graphs such as the connected split graphs and  spiders in this paper. The complexity of the parameter is also discussed.

Downloads

Download data is not yet available.

Author Biography

V. Jude Annie Cynthia, Stella Maris College, Affiliated to the University of Madras, Chennai, India

Dr. V. Jude Annie Cynthia, Associate Professor and Research Supervisor, Department of Mathematics, Stella Maris College, Affiliated to the University of Madras, Chennai, India.

Research Experience: 23 years

Research Supervision: 13 Research Scholars (8 completed)

Publications: More than 50 in Elsevier, Scopus, WOS, UGC care listed International Journals & other peer-reviewed journals

References

T. Araki and I. Yumoto, On the secure domination numbers of maximal outerplanar graphs, Discrete Applied Mathematics 236 (2018), 23 – 29, doi:10.1016/j.dam.2017.10.020.

N. Biggs, Perfect codes in graphs, Journal of Combinatorial Theory, Series B 15(3) (1973), 289 – 296, doi:10.1016/0095-8956(73)90042-7.

A.P. Burger, A.P. de Villiers and J.H. van Vuuren, On minimum secure dominating sets of graphs, Quaestiones Mathematicae 39(2) (2016), 189 – 202, doi:10.2989/16073606.2015.1068238.

A.P. Burger, M.A. Henning and J.H. van Vuuren, Vertex covers and secure domination in graphs, Quaestiones Mathematicae 31(2) (2008), 163 – 171, doi:10.2989/QM.2008.31.2.5.477.

M. Cary, J. Cary and S. Prabhu, Independent domination in directed graphs, Communications in Combinatorics and Optimization 6(1) (2021), 67 – 80, doi:10.22049/cco.2020.26845.1149.

P. Chakradhar and P.V.S. Reddy, Complexity issues of perfect secure domination in graphs, RAIRO-Theoretical Informatics and Applications 55 (2021), 11, doi:10.1051/ita/2021012.

E.J. Cockayne, Irredundance, secure domination and maximum degree in trees, Discrete Mathematics 307(1) (2007), 12 – 17, doi:10.1016/j.disc.2006.05.037.

E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278(1-3) (2004), 11 – 22, doi:10.1016/j.disc.2003.06.004.

E.J. Cockayne, P.J.P. Grobler, W.R. Grundlingh, J. Munganga and J.H. Van Vuuren, Protection of a graph, Utilitas Mathematica 67 (2005), 19 – 32, url:https://utilitasmathematica.com/index.php/Index/article/view/370.

W. Goddard and M.A. Henning, Independent domination in graphs: a survey and recent results, Discrete Mathematics 313(7) (2013), 839 – 854, doi:10.1016/j.disc.2012.11.031.

P.J.P. Grobler and C.M. Mynhardt, Secure domination critical graphs, Discrete Mathematics 309(19) (2009), 5820 – 5827, doi:10.1016/j.disc.2008.05.050.

T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Eds.), Topics in domination in graphs, Series: Developments in Mathematics, 64, Springer, Cham (2020), doi:10.1007/978-3-030-51117-3.

T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in graphs: Core concepts, Series: Springer Monographs in Mathematics, Springer, Cham (2023), doi:10.1007/978-3-031-09496-5.

T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Volume 2: Advanced topics, Routledge, New York (2017), doi:10.1201/9781315141428.

M.A. Henning and S.T. Hedetniemi, Defending the Roman empire - a new strategy, Discrete Mathematics 266(1-3) (2003), 239 – 251, doi:10.1016/S0012-365X(02)00811-7.

J.L. Hurink and T. Nieberg, Approximating minimum independent dominating sets in wireless networks, Information processing letters 109(2) (2008), 155 – 160, doi:10.1016/j.ipl.2008.09.021.

W.F. Klostermeyer and C.M. Mynhardt, Secure domination and secure total domination in graphs, Discussiones Mathematicae Graph Theory 28(2) (2008), 267 – 284, doi:10.7151/dmgt.1405.

Z. Li and J. Xu, A characterization of trees with equal independent domination and secure domination numbers, Information Processing Letters 119 (2017), 14 – 18, doi:10.1016/j.ipl.2016.11.004.

H.B. Merouane and M. Chellali, On secure domination in graphs, Information Processing Letters 115(10) (2015), 786 – 790, doi:10.1016/j.ipl.2015.05.006.

S.V.D. Rashmi, S. Arumugam, K.R. Bhutani and P. Gartland, Perfect secure domination in graphs, Categories and General Algebraic Structures with Applications 7 Special Issue on the Occasion of Banaschewski’s 90th Birthday (II) (2017), 125 – 140, url:https://cgasa.

sbu.ac.ir/article_44926.html.

S. Varghese, S. Varghese and A. Vijayakumar, Power domination in Mycielskian of spiders, AKCE International Journal of Graphs and Combinatorics 19(2) (2022), 154 – 158, doi:10.1080/09728600.2022.2082900.

H. Wang, Y. Zhao and Y. Deng, The complexity of secure domination problem in graphs, Discussiones Mathematicae Graph Theory 38(2) (2018), 385 – 396, doi:10.7151/dmgt.2008.

Published

13-08-2025

How to Cite

Merlin Thomas, & V. Jude Annie Cynthia. (2025). Independent Perfect Secure Domination in Graphs. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/3035

Issue

Section

Research Article