“Rough $\Delta^{m}-$Statistical Convergence of Order $\alpha$ of Generalized Difference Sequences in Intuitionistic fuzzy Normed Space”

Authors

Keywords:

Intuitionistic normed spaces, Statistical Convergence, Rough Statistical Convergence, Difference sequence, Generalized difference sequence

Abstract

The prime direction of this research article is to explicate the perception of rough $\Delta^m$-statistical convergence of order $\alpha$ of generalized difference sequences in intutionistic fuzzy normed spaces. We showed certain rough convergence features, which give some new functional tools in the face of uncertainty, such as intuitionistic fuzzy normed spaces. We demonstrated some basic properties and examples which generates the results that this perception is more generic. Further, we added the set of $\Delta^m$-statistical limit points and set of $\Delta^m$-statistical cluster points and their relationship of rough $\Delta^m$-statistically convergence of generalized difference sequences in these spaces.

Downloads

Download data is not yet available.

References

bibitem{atanassov1986intuitionistic} K. Atanassov,

textit{Intuitionistic fuzzy sets}, fuzzy sets and systems {bf 20}, (1986) 87--96.

bibitem{aytar2008rough} S. Aytar,

textit{Numerical functional analysis and optimization}, Numerical functional analysis and optimization {bf 29}

(2008) 291--303.

bibitem{chawla2013lambda} M. Chawla, M.S. Saroa, and V. Kumar,

textit{On $lambda$-statistical convergence of order alpha in

random 2-normed space}, miskolc math. Notes

{bf 16} (2013) 1003–-1015.

bibitem{ccinar2020delta} M. C¸ inar and M. Et.,

textit{$Delta^m$- statistical convergence of order alpha for double sequences of functions}, Facta Universitatis, Series: Mathematics and Informatics

(2020) 393–-404.

bibitem{demir2020rough} N. Demir and H. G¨um¨us,

textit{Rough convergence for difference sequences}, New Trends in

Mathematical Sciences

{bf 8} (2020) 22–-28.

bibitem{edely2003statistical} O.H.H. Edely,

textit{Statistical convergence of double sequences}, J. Math. Anal. Appl.

{bf 288} (2003) 223–-231.

bibitem{et1995some} M. Et and R. C¸ olak,

textit{On some generalized difference sequence spaces}, Soochow J. Math.

{bf 21} (1995) 377–-386.

bibitem{et2001delta} M. Et and F. Nuray,

textit{$Delta^m$-statistical convergence}, Indian Journal of Pure and Applied Mathematics

{bf 32} (2001).

bibitem{fast1951convergence} H. Fast,

textit{Sur la convergence statistique}, In Colloq. Math.

{bf 2} (1951) 241--244.

bibitem{giles1980computer} R. Giles,

textit{A computer program for fuzzy reasoning}, Fuzzy sets and systems

{bf 4} (1980) 221--234.

bibitem{karakus2007statistical} S. Karakus and K. Demırcı,

textit{Statistical convergence of double sequences on probabilistic normed spaces}, Int. J. Math. Sci.

bibitem{karakus2008statistical} S. Karakus, K. Demirci, and O. Duman,

textit{Statistical convergence on intuitionistic fuzzy normed spaces},

{bf 4} (2008) 763--769.

bibitem{kizmaz1981certain} H. Kizmaz,

textit{On certain sequence spaces}, Canad. Math. Bull.

{bf 24} (1981) 169--176.

bibitem{lootsma2013fuzzy} F.A. Lootsma,

textit{Fuzzy logic for planning and decision making}, Springer Science

and Business Media

{bf 8} (2013).

bibitem{maity2016note} M. Maity,

textit{A note on rough statistical convergence of order $alpha$}, arXiv:1603.00183

(2016).

bibitem{mohiuddine2009generalized} S.A. Mohiuddine and Q.M. Danish Lohani,

textit{On generalized statistical convergence in intuitionistic fuzzy normed space},

{bf 42} (2009) 1731--1737.

bibitem{moricz2003statistical} F. M´oricz,

textit{Statistical convergence of multiple sequences}, Arch. Math.

{bf 81} (2003) 82--89.

bibitem{mursaleen2010statistical} M. Mursaleen,

textit{On statistical convergence in random 2-normed spaces}, Acta Sci. Math.(Szeged)

{bf 76} (2010) 101--109.

bibitem{nguyen2006fundamentals} H.T. Nguyen and B. Wu.,

textit{Fundamentals of statistics with fuzzy data}, Springer

{bf 198} (2006).

bibitem{park2004intuitionistic} J.H. Park,

textit{Intuitionistic fuzzy metric spaces}, Chaos, Solitons and Fractals

{bf 22} (2004) 1039--1046.

bibitem{phu2001rough} H.X. Phu,

textit{Rough convergence in normed linear spaces}, Numerical functional analysis and optimization

{bf 22} (2001) 199--222.

bibitem{prade1980operations} H.M. Prade,

textit{Operations research with fuzzy data in Fuzzy sets}, Springer (1980) 155--170.

bibitem{meenakshi2019} Reena, Meenakshi, and T. Bansal,

textit{Statistical convergence of order $alpha$ in intuitionistic fuzzy normed spaces}, International Journal on Emerging Technologies

(2019) 43--47.

bibitem{reena2019generalized} Reena, Meenakshi, and V. Kumar,

textit{Generalized statistical convergence of $alpha$ in random n-normed space},

{bf 18} (2019) 715--729.

bibitem{ross2004fuzzy} T.J. Ross et al,

textit{Fuzzy logic with engineering applications}, Wiley Online Library

{bf 2} (2004).

bibitem{saadati2006intuitionistic} R. Saadati and J.H. Park,

textit{On the intuitionistic fuzzy topological spaces}, Chaos, Solitons and Fractals

{bf 27} (2006) 331--344.

bibitem{csahiner2007triple} A. S¸ahiner, M. G¨urdal, and F.K. D¨uden,

textit{Triple sequences and their statistical convergence}, Selcuk J. Appl. Math.

{bf 8} (2007) 49--55.

bibitem{vsalat1980statistically} T. Sal´at,

textit{On statistically convergent sequences of real numbers}, Math. Slovaca

{bf 30} (1980) 139--150.

bibitem{schweizer1960statistical} B. Schweizer, A. Sklar, et al,

textit{Statistical metric spaces}, Pacific J. Math

{bf 10} (1960) 313--334.

bibitem{steinhaus1951convergence} H. Steinhaus,

textit{Sur la convergence ordinaire et la convergence asymptotique}, In Colloq. Math

{bf 2} (1951) 73--74.

bibitem{zadeh1965information} L.A. Zadeh,

textit{Information and control}, Fuzzy sets

{bf 8} (1965) 338--353.

bibitem{zygmund1930convergence} A. Zygmund,

textit{On the convergence of lacunary trigonometric series}, Fund. Math.

{bf 16} (1930) 90--107.

Published

20-08-2025

How to Cite

Kaur, G. (2025). “Rough $\Delta^{m}-$Statistical Convergence of Order $\alpha$ of Generalized Difference Sequences in Intuitionistic fuzzy Normed Space”. Communications in Mathematics and Applications, 16(2). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/3006

Issue

Section

Research Article