Sensitivity Analysis of a General Lung Diseases Progression Stochastic Model Considering Two Types of Diagnostic Tests

Authors

DOI:

https://doi.org/10.26713/cma.v16i1.2996

Keywords:

Lung disease, Mean sojourn time, Mean survival time, Markov process, Regenerative point technique, Sensitivity analysis

Abstract

Lung is a vital organ in the human body that is affected by many diseases each with different causes, symptoms and treatments. In the present paper, a general stochastic model for lung diseases has been developed considering various stages of progression of the disease. In the model, two types of diagnostic tests viz. normal and advance diagnostic tests have been taken into account. For the survival analysis purpose, mean sojourn times and mean survival time have been calculated for the model using concepts of Markov process and regenerative point techniques. Sensitivity and relative sensitivity analyses have also been performed to find out how the variation in parameters affect the mean survival time under certain specific conditions.

Downloads

Download data is not yet available.

References

K. S. Burrowes, T. Doel and C. Brightling, Computational modeling of the obstructive lung diseases asthma and COPD, Journal of Translational Medicine 12 (2014), Article number: S5, DOI: 10.1186/1479-5876-12-S2-S5.

W. Dong, Y. Yin, S. Yang, B. Liu, X. Chen, L. Wang, Y. Su, Y. Jiang, D. Shi, D. Sun and J. Qin, Impact of chronic obstructive pulmonary disease on the efficacy and safety of neoadjuvant immune checkpoint inhibitors combined with chemotherapy for resectable non-small cell lung cancer: a retrospective cohort study, BMC Cancer 24 (2024), Article number: 153, DOI: 10.1186/s12885-024-11902-w.

U. Frey, T. Broadbeck, A. Majumdar, D. R. Taylor, G. I. Town, M. Silverman and B. Suki, Risk of severe asthma episodes predicted from fluctuation analysis of airway function, Nature 438 (2005), 667 – 670, DOI: 10.1038/nature04176.

K. Ganguly, U. Carlander, E. D. G. Garessus, M. Friden, U. G. Eriksson, U. Tehler and J. Gunnar, Computational modeling of lung deposition of inhaled particles in chronic obstructive pulmonary disease (COPD) patients: identification of gaps in knowledge and data, Critical Review in Toxicology 49(2) (2019), 160 – 173, DOI: 10.1080/10408444.2019.1584153.

L. P. Gargano, I. de F. Zuppo, M. M. G. do Nascimento, V. M. Augusto, B. Godman, J. O. Costa, F. A. Acúrcio, J. Álvares-Teodoro and A. A. Guerra Jr., Survival analysis of COPD patients in a 13-year nationwide cohort study of the Brazilian national health system, Frontiers in Big Data 4 (2022), 1 – 10, DOI: 10.3389/fdata.2021.788268.

I. Iheanacho, S. Zhang, D. King, M. Rizzo and A. S. Ismaila, Economic burden of Chronic Obstructive Pulmonary Disease (COPD): A systematic literature review, International Journal of Chronic Obstructive Pulmonary Disease 15 (2020), 439 – 460, DOI: 10.2147/COPD.S234942.

D. S. Jeon, H. C. Kim, S. H. Kim, T.-J. Kim, H. K. Kim, M. H. Moon, K. S. Beck, Y.-G. Suh, C. Song, J. S. Ahn, J. E. Lee, J. U. Lim, J. H. Jeon, K.-W. Jung, C. Y. Jung, J. S. Cho, Y.-D. Choi, S.-S. Hwang, C.-M. Choi and Korean Association for Lung Cancer, Korea Central Cancer Registry, Five-year overall survival and prognosis factors in patients with lung cancer: Results from the Korean Association of Lung Cancer Registry 2015, Cancer Research Treatment 55(1) (2023), 103 – 111, DOI: 10.4143/crt.2022.264.

F. Ju, H. K. Lee, R. U. Osarogiagbon, X. Yu, N. Faris and J. Li, Computer modeling of lung cancer diagnosis-to-treatment process, Translational Lung Cancer Research 4(4) (2015), 404 – 414, DOI: 10.3978/j.issn.2218-6751.2015.07.16.

S. T. H. Kieu, A. Bade, M. H. A. Hijazi and H. Kolivand, A survey of deep learning for lung disease detection on medical images: State-of-the-art, taxonomy, issues and future directions, Journal of Imaging 6(12) (2020), 131, DOI: 10.3390/jimaging6120131.

H. Schöllnberger, M. Manuguerra, H. Bijwaard, H. Boshuizen, H. P. Altenburg, S. M. Rispens, M. J. P. Brugmans and P. Vineis, Analysis of epidemiological cohort data on smoking effects and lung cancer with a multi-stage cancer model, Carcinogenesis 27(7) (2006), 1432 – 1444, DOI: 10.1093/carcin/bgi345.

E. Shin, J. Jin, S.-Y. Park, Y.-S. Yoo, J.-H. Lee, J. An, W.-J. Song, H.-S. Kwon, Y. S. Cho, H.-B. Moon, J.-B. Lee and T.-B. Kim, Impact of asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap on the prognosis of coronavirus disease 2019, Asia Pacific Allergy 12(2) (2022), e21, DOI: 10.5415/apallergy.2022.12.e21.

A. Verma, N. Gudi, U. N. Yadav, M. P. Roy, A. Mahmood, R. Nagaraja and P. Nayak, Prevalence of COPD among population above 30 years in India: A systematic review and meta-analysis, Journal of Global Health 11 (2021), 04033 – 04039, DOI: 10.7189/jogh.11.04038.

J. Wu, W. Meng, Y. Ma, Z. Zhao, R. Xiong, J. Wang, R. Zhao, H. Zeng and Y. Chen, Early smoking lead to worse prognosis of COPD patients: a real world study, Respiratory Research 25 (2024), Article number: 140, DOI: 10.1186/s12931-024-02760-y.

S. Xiong, W. Chen, X. Jia, Y. Jia and C. Liu, Machine learning for prediction of asthma exacerbations among asthmatic patients: a systematic review and meta-analysis, BMC Pulmonary Medicine 23 (2023), Article number: 278, DOI: 10.1186/s12890-023-02570-w.

S. Zoltan, Maximizing the amount of deposited particles during a severe asthma attack using the stochastic lung model, Acta Marisiensis - Seria Medica 61(3) (2015), 217 – 220, DOI: 10.1515/amma-2015-0043.

Downloads

Published

13-08-2025
CITATION

How to Cite

Suman, & Kumar, R. (2025). Sensitivity Analysis of a General Lung Diseases Progression Stochastic Model Considering Two Types of Diagnostic Tests. Communications in Mathematics and Applications, 16(1), 29–43. https://doi.org/10.26713/cma.v16i1.2996

Issue

Section

Research Article