A Mean Iterative Approach for Multiple Polynomial Zeros and Convergence

Authors

  • RAJAT SUBHRA DAS Dr.L.K.V.D. College, Tajpur
  • Abhimanyu Kumar

Keywords:

Local convergence,, Polynomial zeros, Multiple zeros, Initial conditions

Abstract

In this study, we propose a mean iterative approach of third-order for solving a polyno-
mial equation that has multiple type zeros. We used three prominent third-order algorithms
for this build: Chebyshev, Halley, and Super-Hallev. For this CHS Combined Mean Method,
we developed two forms of local convergence theorems to determine the convergence of a
polynomial that has multiple zeros. We used the gauge function to determine the conver-
gence of our technique. We employed two distinct forms of initialconditions on a field with
norm to prove the local convergence theorems for the CHS combined mean technique. Our
convergence analysis includes error estimates.

 

Downloads

Download data is not yet available.

Author Biography

Abhimanyu Kumar

 

 

References

N. Osada, Asymptotic error constants of cubically convergent zero nding meth-

ods, Journal of Computational and Applied Mathematics 196 (2006), 347 { 357,

doi:10.1016/j.cam.2005.09.016.

B. Neta, New third order nonlinear solvers for multiple roots, Applied Mathematics and

Computation 202 (2008), 162 { 170, doi:10.1016/j.amc.2008.01.031.

C. Chun and B. Neta, A third-order modi cation of Newtons method for multiple roots, Ap-

plied Mathematics and Computation 211 (2009), 474 { 479, doi:10.1016/j.amc.2009.01.087.

H. Ren and I.K. Argyros, Convergence radius of the modi ed Newton method for multi-

ple zeros under Holder continuous derivative, Applied Mathematics and Computation 217

(2006), 612 { 621, doi:10.1016/j.amc.2010.05.098.

P. Chebychev, Computation roots of an equation. In: Complete Works of

P.L.Chebishev USSR Academy of Sciences, Moscow (in Russian) 5 (1964), 7 { 25,

doi:10.1098/rstl.1694.0029.

J.F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company:

Chelsea, VT, USA (1982).

N. Obreshkov, On the numerical solution of equations (in Bulgarian), Annuaire Univ. So a

Fac. Sci. Phys. Math. 56 (1963), 73 { 83.

E. Halley, A New Exact and Easy Method for Finding the Roots of Equations Generally

and without any Previous Reduction Philosophical Transactions of the Royal Society of

London 18 (1964), 136 { 148, doi:10.1098/rstl.1694.0029.

J.M. Gutirrez and M.A. Hernandez, An acceleration of Newtons method: Super-Halley

method, Applied Mathematics and Computation 117 (2001), 223 { 239, doi:10.1016/S0096-

(99)00175-7.

P.D. Proinov, New general convergence theory for iterative processes and its applica-

tions to NewtonKantorovich type theorems. Journal of Complexity 26 (2016), 3 { 42,

doi:10.1016/j.jco.2009.05.001.

P.D. Proinov, General convergence theorems for iterative processes and applications

to the Weierstrass root- nding method, Journal of Complexity 33 (2016), 118 { 144,

doi:10.1016/j.jco.2015.10.001.

S.I. Ivanov, General Local Convergence Theorems about the Picard Iteration in Arbitrary

Normed Fields with Applications to Super-Halley Method for Multiple Polynomial Zeros,

Mathematics 8 (2020), 1599, doi:10.3390/math8091599.

S.I. Ivanov, Uni ed Convergence Analysis of ChebyshevHalley Methods for Multiple Poly-

nomial Zeros. Mathematics 10 (2022), 1599, doi:10.3390/math10010135.

Published

13-08-2025

How to Cite

DAS, R. S., & Kumar, A. (2025). A Mean Iterative Approach for Multiple Polynomial Zeros and Convergence. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2971

Issue

Section

Research Article