A NOTE ON LINEAR MULTIPLIER FRACTIONAL q-DIFFERINTEGRAL OPERATOR WITH VARYING ARGUMENTS

Authors

  • Ravikumar Ningegowda University of Mysore

Keywords:

Analytic function; Univalent function; Fractional q-differintegral operator; q- Bernardi operator.

Abstract

We introduce new subclasses of analytic functions with varying arguments by making
use of linear multiplier fractional q-differintegral operator. For functions belonging to these
classes, we obtain coefficient estimates, distortion theorems, extreme points, q-Bernardi integral
operator, and many more properties

Downloads

Download data is not yet available.

References

M. K. Aouf, A. O. Mostafa, A. Shamandy, and E. A. Adwan. Some properties for certain class

of analytic functions with varying arguments. International Journal of Analysis, 2013(1), 1-4, 2013.

https://doi.org/10.1155/2013/380938.

M. K. Aouf, A. Shamandy, A. O. Mostafa, and E. A. Adwan. Subordination results for certain classes of

analytic functions defined by convolution with complex order. Bulletin of Mathematical Analysis and Applications,

(1), 61-68, 2011.

M. Chen. On functions satisfying Re {f (z)/z} > α. Tamkang Journal of Mathematics ,5,231-234, 1974.

M. Chen. On the regular functions satisfying Re {f (z)/z} > α. Bulletin of the Institute of Mathematics.

Academia Sinica,3(1),65-70, 1975.

G. Gasper and M. Rahman. Basic hypergeometric series. Encyclopedia of Mathematics and Its Applications

Cambridge University Press, Cambridge, Mass, USA,35,1990.

C. Gao and S. Owa. Certain class of analytic functions in the unit disk. Kyungpook Mathematical Journal,

(1), 13-23, 1993.

R. M. Goel. On functions satisfying Re {f (z)/z} > α. Publicationes Mathematicae Debrecen,, 18, 111-117,

W. Janowski. Some extremal problems for certain families of analytic functions. Annales Polonici Mathematici,

(28), 297–326, 1973.

F. H. Jackson. On q-functions and a certain difference operator. Earth and Environmental Science Transactions

of the Royal Society of Edinburgh, 46(2), 253–281, 1909. https://doi.org/10.1017/S0080456800002751.

K. I. Noor, S. Riaz and M. A. Noor. On q-Bernardi integral operator. TWMS Journal of Pure and Applied

Mathematics, 8(3), 3-11, 2017.

S. D. Purohit and R. K. Raina. Certain subclasses of analytic functions associated with fractional q-calcurmlus

operators. Mathematica Scandinavica, 109, 55–70, 2011. https://doi.org/10.7146/math.scand.a-15177.

N. Ravikumar. Certain classes of analytic functions defined by fractional q-calculus operator. Acta Universitatis

Sapientiae, Mathematica, 10(1),178–188, 2018. https://doi.org/10.2478/ausm-2018-0015.

H. Silverman. Univalent functions with varying arguments. Houston Journal of Mathematics, 7(2), 283–287,

H. M. Srivastava. S. Owa. Certain classes of analytic functions with varying arguments. Journal of mathematical

analysis and applications, 136(1), 217-228, 1988.

S. Sivasubramanian, A. Mohammed, and M. Darus. Certain subordination properties for subclasses of analytic

functions involving complex order. Abstract and Applied Analysis, 2011. https://doi.org/10.1155/2011/375897.

Published

13-08-2025

How to Cite

Ningegowda, R. (2025). A NOTE ON LINEAR MULTIPLIER FRACTIONAL q-DIFFERINTEGRAL OPERATOR WITH VARYING ARGUMENTS. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2965

Issue

Section

Research Article