Mixed Hegselmann-Krause Dynamics III

Authors

DOI:

https://doi.org/10.26713/cma.v16i1.2957

Keywords:

Mixed Hegselmann-Krause dynamics, Hegselmann-Krause model, Deffuant model, Social network, Heterogeneous interaction mode

Abstract

The mixed Hegselmann-Krause (HK) model encompasses both the Deffuant and HK models. Building upon our previous work (Mixed Hegselmann-Krause dynamics II, Discrete and Continuous Dynamical Systems - B 28(5) (2023), 2981 – 2993), we delve into the mixed HK model within a heterogeneous interaction framework. This involves either pair interaction, where all interacting pairs approach each other equally at their rate, or group interaction at each time step. Our research focuses on identifying circumstances conducive to consensus formation within this heterogeneous interaction paradigm. Furthermore, we delve into pair interaction scenarios where interacting pairs can approach each other at distinct rates. This differs from the Deffuant model, where an interacting pair can only approach each other at the same rate under a homogeneous threshold. Our investigation also aims to elucidate the conditions under which consensus can be attained under pair interaction with distinct approaching rates.

Downloads

Download data is not yet available.

References

C. Bernardo, F. Vasca and R. Iervolino, Heterogeneous opinion dynamics with confidence thresholds adaptation, IEEE Transactions on Control of Network Systems 9(3) (2022), 1068 – 1079, DOI: 10.1109/TCNS.2021.3088790.

A. Bhattacharyya, M. Braverman, B. Chazelle and H. L. Nguyen, On the convergence of the Hegselmann-Krause system, in: Proceedings of the 4th conference on Innovations in Theoretical Computer Science (ITCS’13), pp. 61 – 66, (2013), DOI: 10.1145/2422436.2422446.

G. Chen, W. Su, W. Mei and F. Bullo, Convergence properties of the heterogeneous Deffuant–Weisbuch model, Automatica 114 (2020), 108825, DOI: 10.1016/j.automatica.2020.108825.

J. Cox and R. Durrett, Nonlinear voter models, in: Random Walks, Brownian Motion, and Interacting Particle Systems, R. Durrett and H. Kesten (editors), Progress in Probability series, Vol. 28. Birkhäuser, Boston, MA, (1991), DOI: 10.1007/978-1-4612-0459-6_8.

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Advances in Complex Systems 3(01n04) (2000), 87 – 98, DOI: 10.1142/S0219525900000078.

S. Fortunato, On the consensus threshold for the opinion dynamics of Krause–Hegselmann, International Journal of Modern Physics C 16(02) (2005), 259 – 270, DOI: 10.1142/S0129183105007078.

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, Journal of Artificial Societies and Social Simulation 5(3) (2002), 1 – 33, URL: https://www.jasss.org/5/3/2/2.pdf.

H.-L. Li, Mixed Hegselmann-Krause dynamics, Discrete and Continuous Dynamical Systems - B 27(2) (2022), 1149 – 1162, DOI: 10.3934/dcdsb.2021084.

H.-L. Li, Mixed Hegselmann-Krause dynamics II, Discrete and Continuous Dynamical Systems - B 28(5) (2023), 2981 – 2993, DOI: 10.3934/dcdsb.2022200.

J. Lorenz, A stabilization theorem for dynamics of continuous opinions, Physica A: Statistical Mechanics and its Applications 355(1) (2005), 217 – 223, DOI: 10.1016/j.physa.2005.02.086.

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C 18(12) (2007), 1819 – 1838, DOI: 10.1142/S0129183107011789.

R. Parasnis, M. Franceschetti and B. Touri, Hegselmann-Krause dynamics with limited connectivity, in: 2018 IEEE Conference on Decision and Control (CDC) (Miami, FL, USA, 2018), pp. 5364- – 369, (2018), DOI: 10.1109/CDC.2018.8618877.

A. V. Proskurnikov and R. Tempo, A tutorial on modeling and analysis of dynamic social networks. Part I, Annual Reviews in Control 43 (2017), 65 – 79, DOI: 10.1016/j.arcontrol.2017.03.002.

Y. Shang, Deffuant model with general opinion distributions: First impression and critical confidence bound, Complexity 19(2) (2013), 38 – 49, DOI: 10.1002/cplx.21465.

Y. Shang, Deffuant model of opinion formation in one-dimensional multiplex networks, Journal of Physics A: Mathematical and Theoretical 48(39) (2015), 395101, DOI: 10.1088/1751-8113/48/39/395101.

F. Vasca, C. Bernardo and R. Iervolino, Practical consensus in bounded confidence opinion dynamics, Automatica 129 (2021), 109683, DOI: 10.1016/j.automatica.2021.109683.

Downloads

Published

13-08-2025
CITATION

How to Cite

Li, H.-L. (2025). Mixed Hegselmann-Krause Dynamics III. Communications in Mathematics and Applications, 16(1), 45–54. https://doi.org/10.26713/cma.v16i1.2957

Issue

Section

Research Article