Mixed Hegselmann-Krause dynamics III

Authors

  • Hsin-Lun Li National Sun Yat-Sen university

Keywords:

Mixed Hegselmann-Krause dynamics, Hegselmann-Krause model, Deffuant model, social network, heterogeneous interaction mode

Abstract

The mixed Hegselmann-Krause (HK) model encompasses both the Deffuant and Hegselmann-Krause models. Building upon our previous work in~\cite{mHK2}, we delve into the mixed HK model within a heterogeneous interaction framework. This involves either pair interaction, where all interacting pairs approach each other equally at their rate, or group interaction at each time step. Our research focuses on identifying circumstances conducive to consensus formation within this heterogeneous interaction paradigm. Furthermore, we delve into pair interaction scenarios where interacting pairs can approach each other at distinct rates. This differs from the Deffuant model, where an interacting pair can only approach each other at the same rate under a homogeneous threshold. Our investigation also aims to elucidate the conditions under which consensus can be attained under pair interaction with distinct approaching rates.

Downloads

Download data is not yet available.

References

begin{thebibliography}{10}

bibitem{bernardo2021heterogeneous}

C.~Bernardo, F.~Vasca, and R.~Iervolino.

newblock Heterogeneous opinion dynamics with confidence thresholds adaptation.

newblock {em IEEE Transactions on Control of Network Systems}, 2021.

bibitem{bhattacharyya2013convergence}

A.~Bhattacharyya, M.~Braverman, B.~Chazelle, and H.~L. Nguyen.

newblock On the convergence of the {H}egselmann-{K}rause system.

newblock In {em Proceedings of the 4th conference on Innovations in Theoretical Computer Science}, pages 61--66, 2013.

bibitem{chen2020convergence}

G.~Chen, W.~Su, W.~Mei, and F.~Bullo.

newblock Convergence properties of the heterogeneous {D}effuant--{W}eisbuch model.

newblock {em Automatica}, 114:108825, 2020.

bibitem{cox1991nonlinear}

J.~Cox and R.~Durrett.

newblock Nonlinear voter models.

newblock In {em Random Walks, Brownian Motion, and Interacting Particle Systems: A Festschrift in Honor of Frank Spitzer}, pages 189--201. Springer, 1991.

bibitem{deffuant2000mixing}

G.~Deffuant, D.~Neau, F.~Amblard, and G.~Weisbuch.

newblock Mixing beliefs among interacting agents.

newblock {em Advances in Complex Systems}, 3(01n04):87--98, 2000.

bibitem{fortunato2005consensus}

S.~Fortunato.

newblock On the consensus threshold for the opinion dynamics of {K}rause--{H}egselmann.

newblock {em International Journal of Modern Physics C}, 16(02):259--270, 2005.

bibitem{fu2015opinion}

G.~Fu, W.~Zhang, and Z.~Li.

newblock Opinion dynamics of modified {H}egselmann--{K}rause model in a group-based population with heterogeneous bounded confidence.

newblock {em Physica A: Statistical Mechanics and its Applications}, 419:558--565, 2015.

bibitem{hegselmann2002opinion}

R.~Hegselmann, U.~Krause, et~al.

newblock Opinion dynamics and bounded confidence models, analysis, and simulation.

newblock {em Journal of artificial societies and social simulation}, 5(3), 2002.

bibitem{lanchier2020probability}

N.~Lanchier and H.-L. Li.

newblock Probability of consensus in the multivariate {D}effuant model on finite connected graphs.

newblock {em Electronic Communications in Probability}, 25:1--12, 2020.

bibitem{lanchier2022consensus}

N.~Lanchier and H.-L. Li.

newblock Consensus in the {H}egselmann--{K}rause model.

newblock {em Journal of Statistical Physics}, 187(3):1--13, 2022.

bibitem{mHK}

H.-L. Li.

newblock Mixed {H}egselmann-{K}rause dynamics.

newblock {em Discrete and Continuous Dynamical Systems - B}, 27(2):1149--1162, 2022.

bibitem{mHK2}

H.-L. Li.

newblock Mixed {H}egselmann-{K}rause dynamics {II}.

newblock {em Discrete and Continuous Dynamical Systems - B}, 28(5):2981--2993, 2023.

bibitem{li2024imitation}

H.-L. Li.

newblock An imitation model based on the majority.

newblock {em Statistics & Probability Letters}, 206:110007, 2024.

bibitem{li2024mixed}

H.-L. Li.

newblock Mixed {H}egselmann-{K}rause dynamics on infinite graphs.

newblock {em Journal of Statistical Mechanics: Theory and Experiment}, 2024(11):113404, 2024.

bibitem{lorenz2005stabilization}

J.~Lorenz.

newblock A stabilization theorem for dynamics of continuous opinions.

newblock {em Physica A: Statistical Mechanics and its Applications}, 355(1):217--223, 2005.

bibitem{lorenz2007continuous}

J.~Lorenz.

newblock Continuous opinion dynamics under bounded confidence: A survey.

newblock {em International Journal of Modern Physics C}, 18(12):1819--1838, 2007.

bibitem{parasnis2018hegselmann}

R.~Parasnis, M.~Franceschetti, and B.~Touri.

newblock Hegselmann-{K}rause dynamics with limited connectivity.

newblock In {em 2018 IEEE Conference on Decision and Control (CDC)}, pages 5364--5369. IEEE, 2018.

bibitem{proskurnikov2017tutorial}

A.~V. Proskurnikov and R.~Tempo.

newblock A tutorial on modeling and analysis of dynamic social networks. part i.

newblock {em Annual Reviews in Control}, 43:65--79, 2017.

bibitem{shang2013deffuant}

Y.~Shang.

newblock Deffuant model with general opinion distributions: First impression and critical confidence bound.

newblock {em Complexity}, 19(2):38--49, 2013.

bibitem{shang2015deffuant}

Y.~Shang.

newblock Deffuant model of opinion formation in one-dimensional multiplex networks.

newblock {em Journal of Physics A: Mathematical and Theoretical}, 48(39):395101, 2015.

bibitem{shang2021consensus}

Y.~Shang.

newblock Consensus formation in networks with neighbor-dependent synergy and observer effect.

newblock {em Communications in Nonlinear Science and Numerical Simulation}, 95:105632, 2021.

bibitem{shang2023non}

Y.~Shang.

newblock Non-linear consensus dynamics on temporal hypergraphs with random noisy higher-order interactions.

newblock {em Journal of Complex Networks}, 11(2):cnad009, 2023.

bibitem{vasca2021practical}

F.~Vasca, C.~Bernardo, and R.~Iervolino.

newblock Practical consensus in bounded confidence opinion dynamics.

newblock {em Automatica}, 129:109683, 2021.

end{thebibliography}

Published

13-08-2025

How to Cite

Li, H.-L. (2025). Mixed Hegselmann-Krause dynamics III. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2957

Issue

Section

Research Article