New Fixed Point Theorem for Generalized Expansion Mappings Utilizing Banach Algebra in G-CMSs

Fixed Point Theorem

Authors

  • Anil Kumar Mishra Durg University,Durg

Keywords:

generalized expansion mapping, Banach algebras(BA) $\hat{\mathcal{B}}, \bar{\mathcal{G}}$-CMS

Abstract

Beg and Abbas were the first to propose generalized cone metric spaces as a comprehensive framework. They established the presence of fixed points in cone metrics for mappings and generalized metric spaces that adhere to specific contractive conditions. In our article, we introduce novel findings concerning fixed points within the context of \(\bar{\mathcal{G}}\)-cone metric spaces using Banach algebras(referred to as \(\bar{\mathcal{G}}\)-CMSBA) by utilizing generalized expansion mappings within the framework of Banach algebras.

Downloads

Download data is not yet available.

References

bibitem{Abbas2009}M.~Abbas and B.E.~Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, emph{ Applied Math. and Computation} textbf{2009}(2009),215.url{https://doi.org/10.1016/j.amc.2009.04.085}

bibitem{Adewale2019}O.K.~Adewale and E.K.~Osawaru ,G-cone metric Spaces over Banach Algebras and Some

Fixed Point Results, emph{International Journal of Mathematical Analysis and Optimization: Theory and Applications}, textbf{2(2019)}(2019), 546--557.url{http://ijmao.unilag.edu.ng/article/view/480}

bibitem{Beg2010}I.~Beg and M.~Abbas and T.~Nazir, Genereralized cone metric spaces, textit{ The Journal of Non-linear Science and Applications} textbf{1}(2010) 21--31.

url{https://www.researchgate.net/publication/233894522_Generalized_cone_metric_spaces}

bibitem{Beg2011}I.~Beg and M.~Abbas and T.~Nazir, Fixed point results in generalized metric spaces, textit{ Acta UniversitatisApulensis},textbf{28}(2011), 215--232.

url{http://emis.icm.edu.pl/journals/AUA/acta28/Paper20-Acta28-2011.pdf}

bibitem{Beg10}I.~Beg and M.~Abbas and T.~Nazir, Common fixed point results in G-cone metric spaces, textit{Journal of Advanced Research in Pure Mathematics} textbf{2(4)} (2010) 94--109.url{http://www.i-asr.com/Journals/jarpm/}

bibitem{Dhage2000}B.~Dhage, A.M.~Pathan and B.E.~Rhoades, A general existence principle for fixed point theorems in D-metric spaces, emph{International Journal of Mathematics and Mathematical Sciences} textbf{23}(2000), 441--448.

url{https://doi.org/10.1155/S0161171200001587}

bibitem{Hao2013}L.~Hao and X.~Shaoyuan, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, emph{Fixed Point Theory and Applications}(2013), 1--10.

url{https://link.springer.com/article/10.1186/1687-1812-2013-320}

bibitem{Huang2007}L.~Huang and X.~Zhang, Cone metric spaces and fixed point theorems of contractive mappings, emph{ J. Math. Anal. Appl,} textbf{332(2)} (2007), 1468--1476.

url{https://core.ac.uk/download/pdf/82146514.pdf}

bibitem{Kadelburg2013}Z.~Kadelburg and S.~Radenovic, “A note on various types of cones and fixed point results in cone metric spaces”, emph{Asian J. Math. Appl.}(2013)textbf{ID ama0104}.

url{https://scienceasia.asia/files/104.pdf}

bibitem{Mishra2022}A.K.~Mishra and Padmavati, On Some Fixed Point Theorem in Ordered G-Cone Metric Spaces Over Banach Algebra, emph{International Journal of Mathematics And its Applications},textbf{10(4)} (2022), 29--38.

url{https://ijmaa.in/index.php/ijmaa/article/view/693/794}

bibitem{Mustafa09}Z.~Mustafa, W.~Shatanawi, M.~Bataineh, and A.~Volodin, Existence of Fixed Point Results in G-Metric Spaces, emph{International Journal of Mathematics and Mathematical Sciences}(2009),10.url{https://onlinelibrary.wiley.com/doi/full/10.1155/2009/283028}

bibitem{Mustafa2008}Z.~Mustafa, H.~Obiedat and F.~

Awawdeh, Some Fixed point theorems for mappings on complete G-metric spaces, emph{Fixed point theory and applications} textbf{(2008)}(2008), 1--12. url{https://link.springer.com/content/pdf/10.1155/2008/189870.pdf}

bibitem{Mustafa2010}Z.~Mustafa, F.~Awawdeh and W.~ Shatanawi, Fixed Point Theorem for Expansive Mappings in G-Metric Spaces, emph{ Int. J. Contemp. Math. Sciences} textbf{5(50)}(2010), 2463--2472.

url{https://links/557934d708ae75363755be38}

bibitem{Olaleru2010}J.O.~Olaleru, Some generalizations of fixed point theorems in cone metric spaces,emph{ Mathematics E-Note} textbf{11}(2010), 41--49.

url{https://link.springer.com/content/pdf/10.1155/2009/657914.pdf}

bibitem{Ozturk2011}M.~Ozturk and M.~Basarir, On some common fixed point theorems with $phi$-maps on G-cone metric spaces, emph{ Bulletin of Mathematical Analysis and Applications} textbf{3}(2011), 121--133.

url{http://www.kurims.kyoto-u.ac.jp/EMIS/journals/BMAA/repository/docs/BMAA3-1-15.pdf}

bibitem{Patil2012}S.R.~Patil and J.N.~Salunke, Expansion Mapping Theorems in G-cone Metric Spaces, emph{Int. Journal of Math. Analysis} textbf{6(44)}(2012), 2147--2158.

url{https://m-hikari.com/ijma/ijma-2012/ijma-41-44-2012/patilIJMA41-44-2012.pdf}

bibitem{Radenovic2009}S.~Radenovic and B.E.~Rhoades, (2009).Fixed point theorem for two non-self mappings in cone metric spaces,emph{ Comput. Math. Appl.} textbf{57}(2009), 1701--1707.

url{https://doi.org/10.1016/j.camwa.2009.03.058}

bibitem{Rezapour2008}S.~Rezapour and R.~Hamlbarani, Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings",emph{ Journal of Mathematical Analysis and Applications} textbf{345(2)}(2008), 719--724.

url{https://doi.org/10.1016/j.jmaa.2008.04.049}

bibitem{Rudin1991}W.~Rudin, Functional Analysis,emph{ 2nd ed. McGraw-Hill, New York}(1991).

url{https://59clc.wordpress.com/wp-content/uploads/2012/08/functional-analysis-_-rudin-2th.pdf}

bibitem{Xu2014}S.~Xu and S.~Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebra without assumption of normality, emph{Fixed Point Theory Appl.}(2014), 1--12. url{https://link.springer.com/article/10.1186/1687-1812-2014-102}

bibitem{Zhang2010}X.~Zhang, Common fixed point Theorems of Lipschitz type mappings in cone metric spaces, emph{Acta Math. Sin.} textbf{53(6)} (2010), 1139--1148.

url{https://www.researchgate.net/publication/267091485}

Published

13-08-2025

How to Cite

Mishra, A. K. (2025). New Fixed Point Theorem for Generalized Expansion Mappings Utilizing Banach Algebra in G-CMSs: Fixed Point Theorem. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2923

Issue

Section

Research Article