Some new oscillation criteria for certain class of quasilinear elliptic equations

Authors

  • George Chatzarakis School of Pedagogical and Technological Education, Marousi 15122, Athens, Greece
  • C. Dhanalakshmi
  • V. Sadhasivam
  • S. Priyadharshini

Keywords:

Elliptic equations, Quasilinear, Oscillation

Abstract

The main goals of this paper is to investigate a new oscillation for a certain class of quasilinear elliptic equations by using Riccati technique. Our main results are demonstrated with an example.

Downloads

Download data is not yet available.

References

aga : R. P. Agarwal, S. R. and D. O'Regan, D.(2002), Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Kluwar Academic publishers, Dordrecht.

aga : R. P. Agarwal., and D. O'Regan, Positive solutions of operator equations: Theoretical results and applications.

all : W. Allegretto, Oscillation criteria for quasilinear equations, Canad.. J. Math, 26(1974) 931-947.

eva : Lawrence C. Evans, Partial differential equations, American Mathematical Society, volume(19).

gil : D. Gilbarg, N. S. Trudinger, Elliptic partial differential equationsof second order, springer-verlag, New york, 1983.

gla : I. M. Glazman, on the negative part of the spectrum of one-dimensional and multi-dimensional differential operators on vector-functions, Dokl. Akad. Nauk SSSR 119(1958), 421-424.

hea : V. B. Headley and C. A. Swanson, Oscillation criteria for elliptic equations, Pacific J. Math.27(1968), 501-506.

jar : J. Jaros, T. Kusano and N. Yoshida, Force superlinear oscillation via picone's identity, Acta Math. Univ. Comenian, 69(2000), 107-113

kre : Kurt Kreith, Oscillation theorems for elliptic equations, Proc. Amer. Math. Soc. 15(1964), 341-344.

kus : T. Kusano and M. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hunger, 76(1-2) (1997) 81-99.

nai : Naito, M.and Yoshida, N., Oscillation for a class of higher order elliptic equations, Math Rep. Toyama Univ., 12(1989), 20-40.

nou : E. S. Noussair, C. A. Swanson, Oscillation theory for semilinear schrodinger equations and inequalities, Proc. Royal Soc. Edinburgh Ser . A 75 (1975/76) 67-81.

nou : E. S. Noussair, C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati transformation, Canad. J. Math. 32(1980) 908-923.

pri : S. Priyadharshini, V. Sadhasivam, Forced oscillation of solutions of conformable hybrid elliptic partial differential equations, Journal Computational Mathematics, 6(1), (2022), 396-412.

pud : S. Pudipeddi, Localized radial solutions for nonlinear P-Laplacian equation in Rⁿ Electron. J. Qual. Theory Differential Equ.20(2008) 1-23.

san : S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, and K. M. Khedher, On the oscillation of certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Mathematics, 8(6), (2023) 12622-12636.

swa : C. A. Swanson, Comparison and oscillation theory of linear differential equations, Academic Press,New York, (1968).

swa : C. A. Swanson, An identify for elliptic equations with applications, Bull. Amer. Math. Soc. 134(1968) , 325-333.

don : Wei Dong, Oscillation and Nonoscillation criteria for quasilinear second order differential equations, 11(7), (2008), 627-636.

xu : Z. Xu, Oscillation and non oscillation of solutions of second order damped elliptic differential equations, Acta Math. Sinica47(2004) 1099-1106(in Chinese).

yos : N. Yoshida, oscillation properties of solutions of second order elliptic equations, SIAM. J. Math. Anal., 14:4(1983), 709-718.

yos : N. Yoshida, Picone-type inequalities for a class of quasilinear elliptic equations and their applications, proceedings of the conference on Differential and Difference equations and Applications(Florida, 2005), New york, 1177-1185.

yos : N. Yoshida, Oscillation theory of partial differential equations, World Scientific, (2008).

yos : N. Yoshida, Forced Oscillation criteria superlinear-sublinear elliptic equations via Picone type inequality, J. Math. Anal. Appl, 363(2010), 193-200.

zhu : R. K. Zhuang, Q. R. Wang, S. M. Zhu, Domain oscillation criteria for second order elliptic differential equations, Acta Math. Sinica 48(2005) 527-534 (in chinese).

Published

13-08-2025

How to Cite

Chatzarakis, G., Dhanalakshmi , C. ., Sadhasivam, V. ., & Priyadharshini, S. (2025). Some new oscillation criteria for certain class of quasilinear elliptic equations. Communications in Mathematics and Applications, 16(1). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2908

Issue

Section

Research Article