3-D Numerical Simulation of Pulsatile Blood Flow Through Healthy and Stenosed Aortoiliac Bifurcation

Authors

  • Josephina Harris Department of Mathematics and Statistics, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India https://orcid.org/0000-0001-8601-2042
  • Bhavna Singh Ghosh Department of Mathematics and Statistics, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India https://orcid.org/0000-0002-9193-9245
  • Ajit Paul Department of Mathematics and Statistics, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India https://orcid.org/0009-0009-5814-1037

DOI:

https://doi.org/10.26713/cma.v15i5.2867

Keywords:

Computational fluid dynamics, Blood flow, Aortic bifurcation, Wall shear stress, Turbulent kinetic energy, OSI

Abstract

 The objective of this study is to examine the effect of pulsatile flow of blood on hemodynamic parameters in aortoiliac bifurcation with 0% and 71% occlusion in the infrarenal aorta. The three-dimensional model with 0% stenosis was generated from Magnetic Resonance Imaging data; further the 3D model with severe stenosis was constructed. Blood was considered Newtonian in nature and the two-equation \(k-\varepsilon\) turbulence model was used to simulate the flow. Maximum and minimum pressure drop was recorded at peak systole and diastolic phase, respectively across the severe stenosis. Maximum velocity is attained at peak systole, while the streamlines show a chaotic nature due to the presence of severe stenosis. The velocity profiles at the sites of interest were examined for both the models, at the throat of severe stenosis the velocity profile becomes asymmetric, owing its asymmetry to the formation of vortices and curvature of the artery. WSS variation was seen majorly at the throat of stenosis with maximum WSS at peak systole. Cardioid shaped region of high turbulent kinetic energy was identified in the post stenotic region in transverse section of model with severe stenosis. The results of this study suggest that the effects of pulsatile flow of blood on hemodynamic parameters is exacerbated due to severe stenosis in Aortoiliac Bifurcation. Using computational methods for investigating the changes in hemodynamic indices and flow patterns governed by pulsatile flow of blood will help in developing more specific and non-invasive medical interventions for Aortoiliac Occlusive Disease (AIOD).

Downloads

Download data is not yet available.

References

M. Abbasian, M. Shams, Z. Valizadeh, A. Moshfegh, A. Javadzadegan and S. Cheng, Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers, Computer Methods and Programs in Biomedicine 186 (2020), 105185, DOI: 10.1016/j.cmpb.2019.105185.

S. A. Ahmed and D. P. Giddens, Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers, Journal of Biomechanics 16(7) (1983), 505 – 516, DOI: 10.1016/0021-9290(83)90065-9.

S. A. Ahmed and D. P. Giddens, Flow disturbance measurements through a constricted tube at moderate Reynolds numbers, Journal of Biomechanics 16(12) (1983), 955 – 963, DOI: 10.1016/0021-9290(83)90096-9.

M. H. Amiri, A. Keshavarzi, A. Karimipour, M. Bahiraei, M. Goodarzi and J. Esfahani, A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls, Heat and Mass Transfer 55(7) (2019), 2037 – 2047, DOI: 10.1007/s00231-019-02583-4.

J. Wendt, Computational Fluid Dynamics: An Introduction, Springer, Berlin—Heidelberg, 291 pages (2013).

M. Andayesh, A. Shahidian and M. Ghassemi, Numerical investigation of renal artery hemodynamics based on the physiological response to renal artery stenosis, Biocybernetics and Biomedical Engineering 40(4) (2020) 1458 – 1468, DOI: 10.1016/j.bbe.2020.08.006.

A. Banerjee, S. Chen, L. Pasea, A. G. Lai, M. Katsoulis, S. Denaxas, V. Nafilyan, B. Williams, W. K. Wong, A. Bakhai, K. Khunti, D. Pillay, M. Noursadeghi, H. Wu, N. Pareek, D. Bromage, T. A. McDonagh, J. Byrne, J. T. H. Teo, A. M. Shah, B. Humberstone, L. V. Tang, A. S. V. Shah, A. Rubboli, Y. Guo, Y. Hu, C. L. M. Sudlow, G. Y. H. Lip and H. Hemingway, Excess deaths in people with cardiovascular diseases during the COVID-19 pandemic, European Journal of Preventive Cardiology 28(14) (2021), 1599 – 1609, DOI: 10.1093/eurjpc/zwaa155

T. Barber, Wall shear stress and near-wall flows in the stenosed femoral artery, Computer Methods in Biomechanics and Biomedical Engineering 20(10) (2017), 1048 – 1055, DOI: 10.1080/10255842.2017.1331342.

A. Bit, A. Alblawi, H. Chattopadhyay, Q. A. Quais, A. C. Benim, M. Rahimi-Gorji and H. T. Do, Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions, Computer Methods and Programs in Biomedicine 185 (2020), 105163, DOI: 10.1016/j.cmpb.2019.105163.

F. Carneiro, V. G. Ribeiro, J. Teixeira and S. Teixeira, Numerical study of blood fluid rheology in the abdominal aorta, WIT Transactions on Ecology and the Environment 114 (2008), 169 – 178, DOI: 10.2495/DN080181.

V. Carvalho, F. Carneiro, A. C. Ferreira, V. Gama, J. C. Teixeira and S. Teixeira, Numerical study of the unsteady flow in simplified and realistic iliac bifurcation models, Fluids 6(8) (2021), 284, DOI: 10.3390/fluids6080284.

V. Carvalho, D. Pinho, R. A. Lima, J. C. Teixeira and S. Teixeira, Blood flow modeling in coronary arteries: A review, Fluids 6(2) (2021), 53, DOI: 10.3390/fluids6020053.

H. Cheng, W. Zhong, L. Wang, Q. Zhang, X. Ma, Y. Wang, S. Wang, C. He, Q. Wei and C. Fu, Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches, Biomedicine & Pharmacotherapy 158 (2023), 114198, DOI: 10.1016/j.biopha.2022.114198.

C. Clark, Turbulent velocity measurements in a model of aortic stenosis, Journal of Biomechanics 9(11) (1976), 677 – 687, DOI: 10.1016/0021-9290(76)90169-X.

S. Engelhard, M. van Helvert, J. Voorneveld, J. G. Bosch, G. P. R. Lajoinie, M. Versluis, E. G. Jebbink and M. M. P. J. Reijnen, US velocimetry in participants with aortoiliac occlusive disease, Radiology 301(2) (2021), 332 – 338, DOI: 10.1148/radiol.2021210454.

S. Engelhard, M. van Helvert, J. Voorneveld, J. G. Bosch, G. Lajoinie, E. G. Jebbink, M. M. P. J. Relijnen and M. Versluis, blood flow quantification with high-frame-rate, contrastenhanced ultrasound velocimetry in stented aortoiliac arteries: In vivo feasibility, Ultrasound in Medicine and Biology 48(8) (2022), 1518 – 1527, DOI: 10.1016/j.ultrasmedbio.2022.03.016.

M. A. Faghy, J. Yates, A. P. Hills, S. Jayasinghe, C. da Luz Goulart, R. Arena, D. Laddu, R. Gururaj, S. K. Veluswamy, S. Dixit and R. E. Ashton, Cardiovascular disease prevention and management in the COVID-19 era and beyond: An international perspective, Progress in Cardiovascular Diseases 76 (2023), 102 – 111, DOI: 10.1016/j.pcad.2023.01.004.

M. Gay and L. T. Zhang, Numerical studies of blood flow in healthy, stenosed, and stented carotid arteries, International Journal for Numerical Methods in Fluids 61(4) (2009), 453 – 472, DOI: 10.1002/fld.1966.Year mismatched.

E. G. Karvelas, N. K. Lampropoulos, T. E. Karakasidis and I. E. Sarris, Blood flow and diameter effect in the navigation process of magnetic nanocarriers inside the carotid artery, Computer Methods and Programs in Biomedicine 221 (2022), 106916, DOI: 10.1016/j.cmpb.2022.106916.

S. W. Lee, L. Antiga and D. A. Steinman, Correlations among indicators of disturbed flow at the normal carotid bifurcation, Journal of Biomechanical Engineering 131(6) (2009), 061013, DOI: 10.1115/1.3127252.

P. Libby, J. E. Buring, L. Badimon, G. K. Hansson, J. Deanfield, M. S. Bittencourt, L. Tokgözoglu and E. F. Lewis, Atherosclerosis, Nature Reviews Disease Primers 5 (2019), Article number: 56, DOI: 10.1038/s41572-019-0106-z.

D. Lopes, H. Puga, J. Teixeira and R. Lima, Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review, Journal of Biomechanics 111 (2020), 110019, DOI: 10.1016/j.jbiomech.2020.110019.

Z. Malota, J. Glowacki, W. Sadowski and M. Kostur, Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices, BMC Cardiovascular Disorders 18(1) (2018), Article number: 132, DOI: 10.1186/s12872-018-0865-6.

U. Morbiducci, A. M. Kok, B. R. Kwak, P. H. Stone, D. A. Steinman and J. J. Wentzel, Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry, Thrombosis and Haemostasis 115(03) (2016), 484 – 492, DOI: 10.1160/TH15-07-0597.

J. Moradicheghamahi, J. Sadeghiseraji and M. Jahangiri, Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery, International Journal of Mechanical Sciences 150 (2019) 393 – 403, DOI: 10.1016/j.ijmecsci.2018.10.046.

S. Nadeem, S. Ali, N. Akkurt, M. B. B. Hamida, S. Almutairi, H. A. Ghazwani, S. M. Eldin, Z. A. Khan and A. Al-Shafay, Modeling and numerical simulation of non-Newtonian arterial blood flow for mild to severe stenosis, Alexandria Engineering Journal 72 (2023), 195 – 211, DOI: 10.1016/j.aej.2023.03.088.

T. Okamoto, E. J. Park, E. Kawamoto, H. Usuda, K. Wada, A. Taguchi and M. Shimaoka, Endothelial connexin-integrin crosstalk in vascular inflammation, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1867(9) (2021), 166168, DOI: 10.1016/j.bbadis.2021.166168.

C. Oliveira, A. A. Soares, A. Simões, S. Gonzaga and A. Rouboa, Numerical study of non-Newtonian blood behavior in the abdominal aortic bifurcation of a patient-specific at rest, The Open Sports Sciences Journal 10(1) (2017), 279 – 285, DOI: 10.2174/1875399X01710010279.

M. J. Paisley, S. Adkar, B. M. Sheehan and J. R. Stern, Aortoiliac occlusive disease, Seminars in Vascular Surgery 35(2) (2022), 162 – 171, DOI: 10.1053/j.semvascsurg.2022.04.005.

R. Pandey, M. Kumar, J. Majdoubi, M. Rahimi-Gorji and V. K. Srivastav, A review study on blood in human coronary artery: Numerical approach, Computer Methods and Programs in Biomedicine 187 (2020), 105243, DOI: 10.1016/j.cmpb.2019.105243.

R. Pandey, M. Kumar and V. K. Srivastav, Numerical computation of blood hemodynamic through constricted human left coronary artery: Pulsatile simulations, Computer Methods and Programs in Biomedicine 197 (2020), 105661, DOI: 10.1016/j.cmpb.2020.105661.

S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge (2012), DOI: 10.1017/CBO9780511840531.

A. Rashid, S. A. Iqrar, A. Rashid and M. Simka, Results of numerical modeling of blood flow in the internal jugular vein exhibiting different types of strictures, Diagnostics 12(1) (2022), 2862, DOI: 10.3390/diagnostics12112862.

M. L. Rizzini, A. Candreva, C. Chiastra, E. Gallinoro, K. Calò, F. D’Ascenzo, B. De Bruyne, T. Mizukami, C. Collet, D. Gallo and U. Morbiducci, Modelling coronary flows: Impact of differently measured inflow boundary conditions on vessel-specific computational hemodynamic profiles, Computer Methods and Programs in Biomedicine 221 (2022), 106882, DOI: 10.1016/j.cmpb.2022.106882.

V. Z. Rocha, F. H. Rached and M. H. Miname, Insights into the role of inflammation in the management of atherosclerosis, Journal of Inflammation Research 16 (2023), 2223 – 2239, DOI: 10.2147/JIR.S276982.

M. Sinnott, P. W. Cleary and M. Prakash, An investigation of pulsatile blood flow in a bifurcation artery using a grid-free method, in: Proceedings of the Fifth International Conference on CFD in the Process Industries (CSIRO, Melbourne, Australia, 13-15 December 2006), pp. 1 – 5 (2006).

B. Thomas, K. S. Sumam and N. Sajikumar, Patient specific modelling of blood flow in coronary artery, Journal of Applied Fluid Mechanics 14(5) (2021), 1469 – 1482, DOI: 10.47176/JAFM.14.05.32186.

M. Vaduganathan, G. A. Mensah, J. V. Turco, V. Fuster and G. A. Roth, The global burden of cardiovascular diseases and risk: A compass for future health, Journal of the American College of Cardiology 80(25) (2022), 2361 – 2371, DOI: 10.1016/j.jacc.2022.11.005.

N. M. Wilson, A. K. Ortiz and A. B. Johnson, The vascular model repository: A public resource of medical imaging data and blood flow simulation results, Journal of Medical Devices 7(4) (2013), 040923, DOI: 10.1115/1.4025983.

D. F. Young, Effect of a time-dependent stenosis on flow through a tube, Journal of Engineering for Industry 90(2) (1968), 248 – 254, DOI: 10.1115/1.3604621.

Downloads

Published

31-12-2024
CITATION

How to Cite

Harris, J., Ghosh, B. S., & Paul, A. (2024). 3-D Numerical Simulation of Pulsatile Blood Flow Through Healthy and Stenosed Aortoiliac Bifurcation. Communications in Mathematics and Applications, 15(5), 1579–1594. https://doi.org/10.26713/cma.v15i5.2867

Issue

Section

Research Article