H-E-Super magic graceful labelings of graphs

H-E-SMGL

Authors

  • Kumar Duraisamy Department of Mathematics, SRM TRP Engineering College
  • M. Elakkiya SRM TRP Engineering College
  • J. Sebastian Lawrance SRM TRP Engineering College
  • M. Bhuvaneshwari SRM TRP Engineering College

Keywords:

$H$-covering, $H$-magic labeling, $H$-$E$-super magic graceful labeling.

Abstract

Let $G$ be a simple graph with $p$ vertices and $q$ edges. A simple graph $G$ admits an $H$-covering in $E(G)$ belongs to a subgraph of $G$ isomorphic to $H$. The graph $G$ is said to be $H$-magic if there exists an one one onto $\mu$ from $V(G) \cup E(G)$ onto $\rightarrow \{ 1,2 , \ldots, p + q \}$ such that for every subgraph $H^{'}$ of $G$ isomorphic to $H$, $ \sum\limits_{v \in V(H^{'})} \mu(v) + \sum\limits_{e \in E(H^{'})} \mu(e) = M$ for some positive integer $M$. An $H$-$E$-super magic graceful labeling ($H$-$E$-SMGL) is an one one onto $\mu$ from $V(G) \cup E(G)$ onto $\rightarrow \{ 1,2 , \ldots, p + q \}$ with the condition that $\mu(E(G)) = \{ 1,2 , \ldots, q\}$ such that, $ \sum\limits_{v \in V(H^{'})} \mu(v) - \sum\limits_{e \in E(H^{'})} \mu(e) = M$. In this paper, we study $H$-$E$-SMGL of fans, graphs obtained by joining a star $K_{1,n}$ with one isolated vertex, books and grids.

 

Downloads

Download data is not yet available.

Author Biographies

M. Elakkiya, SRM TRP Engineering College

Department of Mathematics, SRM TRP Engineering College, Tiruchirapalli-621105,
Tamil Nadu, India.

J. Sebastian Lawrance, SRM TRP Engineering College

Department of Mathematics, SRM TRP Engineering College, Tiruchirapalli-621105,
Tamil Nadu, India. 

M. Bhuvaneshwari, SRM TRP Engineering College

Department of Mathematics, SRM TRP Engineering College, Tiruchirapalli-621105,
Tamil Nadu, India. 

References

bibitem{jos15} J.A. Gallian, A Dynamic Survey of Graph Labeling, emph{Electron. J. Combin.,} (2023), #DS6.

bibitem{l2005} A. Gutierrez, A. Lladó, Magic coverings, emph{J. Combin. Math. Combin. Comput}. textbf{55} (2005), 43 -- 56.

bibitem{Golomb72} S. W. Golomb, How to number a graph, in Graph Theory and Computing, emph{ R.C. Road, ed., Academic Press, New York} (1972), 23-37.

bibitem{l2007} A. Lladó, J. Moragas, Cycle-magic graphs, emph{Discrete Math}. textbf{307 (23)} (2007), 2925 -- 2933.

%bibitem{mari12} G. Marimuthu and M.Balakrishnan, {it E-super vertex magic labeling of graphs}, Discrete Appl. Math. textbf{160} (2012) 1766-1774.

bibitem{Rosa67} A. Rosa,{it On certain valuations of the vertices of a graph}, emph{Theory of Graphs(Inter. Nat. Sym. Rome} July 1966), Gordon and Breach, N.Y. and Dunod

Paris, (1967), 349 -- 355.

bibitem{sed63} Sedl$grave{a}check{c}$ek, Problem 27, in Theory of Graphs and its Applications, emph{Proc. Symposium Smolenice}, June (1963), 163 -- 167.

bibitem{sindhu} Sindhu Murugan and S. Chandra Kumar, $C_{m}-E$-Super magic graceful labeling of graphs, emph{Malaya journal of matematik} textbf{7(4)} (2019), 716 -- 719.

bibitem{skumar} S. StalinKumar, G. Marimuthu, $H$-$E$-super Magic decomposition of complete bipartite graphs, emph{Electron. Notes Discrete Math} textbf{48}(2015), 297 -- 300.

Published

20-08-2025

How to Cite

Duraisamy, K., M. Elakkiya, J. Sebastian Lawrance, & M. Bhuvaneshwari. (2025). H-E-Super magic graceful labelings of graphs: H-E-SMGL. Communications in Mathematics and Applications, 16(2). Retrieved from https://www.journals.rgnpublications.com/index.php/cma/article/view/2854

Issue

Section

Research Article