Analysis of Ree-Eyring Fluid Flow With Heat Transfer and Irreversibility Characteristics Over a Stretching Sheet With Variable Thermal Conductivity: A Couple Stress Model

Authors

DOI:

https://doi.org/10.26713/cma.v15i5.2845

Keywords:

Non-Newtonian fluid, bvp4c, Couple stress, Viscous dissipation, Entropy generation, Magnetic field

Abstract

 Ree-Eyring fluids are good models for lubricants. Understanding the flow behavior of these fluids under stretching conditions can help design better lubricants for applications like bearings and gears, especially at varying shear rates. This research delves into the aspects of heat transmission and magnetohydrodynamic movement of the Ree-Eyring fluid across an elastic sheet. The effect of numerous factors on the fluid’s properties, including temperature, is investigated. The equations governing the problem are subjected to transformation and processed with the bvp5c solver. The findings reveal that a stronger magnetic field impedes the fluid flow. Conversely, a higher Ree-Eyring parameter and a higher couple stress parameter promote faster flow rates. The study demonstrates that the Eckert number and heat source parameter contribute to an upsurge in fluid temperature. In contrast, a higher Prandtl number signifies stronger thermal diffusivity, resulting in a lower temperature profile. A higher Brinkman number indicates a more significant role for viscous dissipation, leading to increased entropy generation. The Bejan number, which reflects the relative dominance of heat transmission versus viscous dissipation, decreases with a rise in viscous dissipation. Finally, the study presents mathematical relationships that quantify the impression of these parameters on the friction factor and Nusselt number.

Downloads

Download data is not yet available.

References

N. A. N. Ariffin, I. Waini, A. R. M. Kasim, M. H. A. Kamal, M. R. Ilias and S. A. Kechil, Flow and heat transfer analysis on Reiner-Philippoff fluid flow over a stretching sheet in the presence of first and second order velocity slip and temperature jump effects, CFD Letters 15(1) (2023), 88 – 102, DOI: 10.37934/cfdl.15.1.88102.

M. Arshad, A. Hussain, A. Hassam, P. Wróblewski, A. Elfasakhany, M. A. Elkotb, M. A. H. Abdelmohimen and A. M. Galal, Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: comparison of single and composite particles, Alexandria Engineering Journal 61(12) (2022), 10453 – 10462, DOI: 10.1016/j.aej.2022.03.069.

M. M. Biswal, K. Swain, G. C. Dash and K. Ojha, Study of radiative magneto-non-Newtonian fluid flow over a nonlinearly elongating sheet with Soret and Dufour effects, Numerical Heat Transfer, Part A: Applications 83(4) (2023), 331 – 342, DOI: 10.1080/10407782.2022.2091379.

S. Faghiri, S. Akbari, M. B. Shafii and K. Hosseinzadeh, Hydrothermal analysis of non-Newtonian fluid flow (blood) through the circular tube under prescribed non-uniform wall heat flux, Theoretical and Applied Mechanics Letters 12(4) (2022), 100360, DOI: 10.1016/j.taml.2022.100360.

A. Hussain, S. Akbar, L. Sarwar, S. Nadeem and Z. Iqbal, Effect of time dependent viscosity and radiation efficacy on a non-Newtonian fluid flow, Heliyon 5(2) (2019), e01203, DOI: 10.1016/j.heliyon.2019.e01203.

S. M. Ibrahim, P. V. Kumar and O. D. Makinde, Chemical reaction and radiation effects on non-Newtonian fluid flow over a stretching sheet with non-uniform thickness and heat source, Defect and Diffusion Forum 387 (2018), 319 – 331, DOI: 10.4028/www.scientific.net/DDF.387.319.

A. S. Idowu and B. O. Falodun, Variable thermal conductivity and viscosity effects on non-Newtonian fluids flow through a vertical porous plate under Soret-Dufour influence, Mathematics and Computers in Simulation 177 (2020), 358 – 384, DOI: 10.1016/j.matcom.2020.05.001.

T. Javed and A. Ghaffar, Numerical study of non-Newtonian Maxwell fluid in the region of oblique stagnation point flow over a stretching sheet, Journal of Mechanics 32(2) (2016), 175 – 184, DOI: 10.1017/jmech.2015.94.

K. A. Khan, A. R. Seadawy and A. Jhangeer, Numerical appraisal under the influence of the time dependent Maxwell fluid flow over a stretching sheet, Mathematical Methods in the Applied Sciences 44(7) (2021), 5265 – 5279, DOI: 10.1002/mma.7107.

S. Khan, M. M. Selim, A. Khan, A. Ullah, T. Abdeljawad, Ikramullah, and W. K. Mashwani, On the analysis of the non-Newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer, Coatings 11(5) (2021), 566, DOI: 10.3390/coatings11050566.

K. A. Khan, M. Vivas-Cortez, K. Ishfaq, M. F. Javed, N. Raza, K. S. Nisar and A.-H. Abdel-Aty, Exploring the numerical simulation of Maxwell nanofluid flow over a stretching sheet with the influence of chemical reactions and thermal radiation, Results in Physics 60 (2024), 107635, DOI: 10.1016/j.rinp.2024.107635.

S. A. Lone, S. Anwar, A. Saeed and G. Bognár, A stratified flow of a non-Newtonian Casson fluid comprising microorganisms on a stretching sheet with activation energy, Scientific Reports 13(1) (2023), Article number: 11240, DOI: 10.1038/s41598-023-38260-0.

B. Mahanthesh, B. J. Gireesha, R. S. Gorla and O. D. Makinde, Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: A numerical study, Neural Computing and Applications 30 (2018), 1557 – 1567, DOI: 10.1007/s00521-016-2742-5.

T. Maranna, S. M. Sachhin, U. S. Mahabaleshwar and M. Hatami, Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media, Scientific Reports 13 (2023), Article number: 12634, DOI: 10.1038/s41598-023-39153-y.

C. M. Mohana and B. R. Kumar, Nanoparticle shape effects on MHD Cu–water nanofluid flow over a stretching sheet with thermal radiation and heat source/sink, International Journal of Modern Physics B 38(10) (2024), 2450151, DOI: 10.1142/S0217979224501510.

R. M. Muntazir, M. Mushtaq, S. Shahzadi and K. Jabeen, MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236(1) (2022), 137 – 152, DOI: 10.1177/09544062211023094.

V. S. Patil, P. P. Human and A. B. Patil, MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction, International Journal of Modelling and Simulation 43(3) (2023), 185 – 199, DOI: 10.1080/02286203.2022.2062166.

D. P. C. Rao, S. Thiagarajan and V. S. Kumar, Heat transfer in Darcy-Forchheimer flow of tangent hyperbolic fluid over an inclined plate with Joule heating, Journal of Applied Mathematics and Computational Mechanics 20(3) (2021), 31 – 40, DOI: 10.17512/jamcm.2021.3.03.

G. Rasool, A. Shafiq, C. M. Khalique and T. Zhang, Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet, Physica Scripta 94 (2019), 105221, DOI: 10.1088/1402-4896/ab18c8.

N. Rehman, R. Mahmood, A. H. Majeed, I. Khan and A. Mohamed, Multigrid simulations of non-Newtonian fluid flow and heat transfer in a ventilated square cavity with mixed convection and baffles, Scientific Reports 14 (2024), Article number: 6694, DOI: 10.1038/s41598-024-57322-5.

Sajjad-ur-Rehman, Rizwan-ul-Haq, C. Lee and S. Nadeem, Numerical study of non-Newtonian fluid flow over an exponentially stretching surface: an optimal HAM validation, Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (2017), 1589 – 1596, DOI: 10.1007/s40430-016-0687-3.

K. Sarada, R. J. P. Gowda, I. E. Sarris, R. N. Kumar and B. C. Prasannakumara, Effect of magnetohydrodynamics on heat transfer behaviour of a non-Newtonian fluid flow over a stretching sheet under local thermal non-equilibrium condition, Fluids 6(8) (2021), 264, DOI: 10.3390/fluids6080264.

M. H. Shahzad, A. U. Awan, A. Akgül, S. Nadeem, K. Guedri, M. K. Hassani and B. M. Makhdoum, Analytical investigation of Carreau fluid flow through a non-circular conduit with wavy wall, Scientific Reports 14(1) (2024), Article number: 2437, DOI: 10.1038/s41598-024-52848-0.

M. H. Shahzad, S. Nadeem, A. U. Awan, S. A. Allahyani, N. A. Ahammad and S. M. Eldin, On the steady flow of non-newtonian fluid through multi-stenosed elliptical artery: A theoretical model, Ain Shams Engineering Journal 15(1) (2024), 102262, DOI: 10.1016/j.asej.2023.102262.

R. P. Sharma and S. Shaw, MHD non-Newtonian fluid flow past a stretching sheet under the influence of non-linear radiation and viscous dissipation, Journal of Applied and Computational Mechanics 8(3) (2022), 949 – 961, DOI: 10.22055/jacm.2021.34993.2533.

P. Sreedevi, P. S. Reddy and A. Chamkha, Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation, SN Applied Sciences 2(7) (2020), 1222, DOI: 10.1007/s42452-020-3011-x.

Downloads

Published

31-12-2024
CITATION

How to Cite

Veeram, G., Gayatri, T. V., Ramana, G. V., Srikanth, M., Rao, D. P. C., & Purushotham, B. (2024). Analysis of Ree-Eyring Fluid Flow With Heat Transfer and Irreversibility Characteristics Over a Stretching Sheet With Variable Thermal Conductivity: A Couple Stress Model. Communications in Mathematics and Applications, 15(5), 1595–1606. https://doi.org/10.26713/cma.v15i5.2845

Issue

Section

Research Article