Rough Convergence for Generalized Difference Sequences by a Compact Operator in Probabilistic \(n\)-Normed Spaces
DOI:
https://doi.org/10.26713/cma.v15i5.2836Keywords:
Rough convergence, Rough limit points, Probabilistic n-normed space, Compact linear operatorAbstract
Using compact operator in probabilistic \(n\)-normed spaces, we develop and investigate the notion of rough convergence for generalized difference sequences. In relation to rough convergence in probabilistic \(n\)-normed spaces, certain fundamental conclusions regarding the concept of rough limit points for a difference sequence are defined.
Downloads
References
C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Mathematicae 46 (1993), 91 – 98, DOI: 10.1007/BF01834000.
A. Asadollah and N. Kourosh, Convex sets in probabilistic normed spaces, Chaos, Solitons & Fractals 36(2) (2008), 322 – 328, DOI: 10.1016/j.chaos.2006.06.051.
A. K. Banerjee and A. Paul, Rough I-convergence in cone metric spaces, Journal of Mathematical and Computational Science 12 (2022), 78, DOI: 10.28919/jmcs/6808.
A. K. Banerjee and R. Mondal, Rough convergence of sequences in a cone metric space, The Journal of Analysis 27 (2019), 1179 – 1188, DOI: 10.1007/s41478-019-00168-2.
G. Constantin and I. Istratescu, Elements of Probabilistic Analysis With Applications, Mathematics and its Applications Sereis, Vol. 36, Springer, xii + 476 pages (1989), URL: https://link.springer.com/book/9789027728388.
E. Dündar and C. Çakan, Rough I-convergence, Demonstratio Mathematica 47(3) (2014), 638 – 651, DOI: 10.2478/dema-2014-0051.
N. Demir and H. Gümü¸s, Rough convergence for difference sequences, New Trends in Mathematical Sciences 2(8) (2020), 22 – 28, DOI: 10.20852/ntmsci.2020.402.
M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bulletin of the Malaysian Mathematical Sciences Society 23(1) (2000), 25 – 32, URL: http://math.usm.my/bulletin/pdf/v23n1/v23n1p3.pdf.
M. Et and F. Nuray, ∆m-statistical convergence, Indian Journal of Pure and Applied Mathematics 32(6) (2001), 961 – 969.
M. Et and R. Çolak, On a generalized difference sequence space, Azerbaijan Journal of Mathematics, Special Issue dedicated to the 67th birth anniversary of Prof. M. Mursaleen (2021), 106 – 116, URL: https://azjm.org/volumes/si_2021.html.
M. J. Frank, Probabilistic topological spaces, Journal of Mathematical Analysis and Applications 34(1) (1971), 67 – 81, DOI: 10.1016/0022-247X(71)90158-2.
I. Golet, On probabilistic 2-normed spaces, Novi Sad Journal of Mathematics 35(1) (2005), 95 – 102.
B. L. Guillén, J. A. R. Lallena and C. Sempi, A study of boundedness in probabilistic normed spaces, Journal of Mathematical Analysis and Applications 232(1) (1999), 183 – 196, DOI: 10.1006/jmaa.1998.6261.
B. L. Guillén, J. A. R. Lallena and C. Sempi, Completion of probabilistic normed spaces, International Journal of Mathematics and Mathematical Sciences 18(4) (1995), 649 – 652, DOI: 10.1155/S0161171295000822.
E. Kamber, Intuitionistic fuzzy I-convergent difference sequences spaces defined by compact operator, Facta Universitatis (Nis), Series: Mathematics and Informatics 37(1) (2022), 485 – 494, DOI: 10.22190/FUMI200810033K.
G. Karabacak and A. Or, Rough statistical convergence for generalized difference sequences, Electronic Journal of Mathematical Analysis and Applications 11(1) (2023), 222 – 230, DOI: 10.21608/ejmaa.2023.285269.
M. Kaur and M. Chawla, On generalized difference rough ideal statistical convergence in neutrosophic normed spaces, Neutrosophic Sets and Systems 68 (2024), 287 – 310, DOI: 10.5281/zenodo.11479539.
M. Kaur, M. Chawla and R. Antal, Rough ideal statistical convergence via generalized difference operators in intuitionistic fuzzy normed spaces, Communications in Mathematics and Applications 15(1) (2024), 221 – 241, DOI: 10.26713/cma.v15i1.2423.
H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.
E. Kreyszig, Introductory Functional Analysis With Applications, John Wiley and Sons, xiv + 688 pages (1978).
P. Malik and M. Maity, On rough statistical convergence of double sequences in normed linear spaces, Afrika Matematika 27(1) (2013), 89 – 99, DOI: 10.1007/s13370-015-0332-9.
K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA 28(12) (1942), 535, DOI: 10.1073/pnas.28.12.535.
S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacettepe Journal of Mathematics and Statistics 42(6) (2013), 633 – 640.
H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numerical Functional Analysis and Optimization 24(2003), 285 – 301, DOI: 10.1081/NFA-120022923.
H. X. Phu, Rough convergence in normed linear spaces, Numerical Functional Analysis and Optimization 22(1-2) (2001), 199 – 222, DOI: 10.1081/NFA-100103794.
M. R. Rahmat, M. Noorani and M. Salmi, Probabilistic n-normed spaces, International Journal of Statistics & Economics 1(S07) (2008), 20 – 30.
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Courier Corporation, 336 pages (2011).
B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, DOI: 10.2140/pjm.1960.10.313.
C. Sempi, A short and partial history of probabilistic normed spaces, Mediterranean Journal of Mathematics 3(2) (2006), 283 – 300, DOI: 10.1007/s00009-006-0078-6.
A. N. Serstnev, The notion of random normed space, Doklady Akademii Nauk SSSR 149 (1963), 280 – 283.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a CCAL that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.