Rough Convergence for Generalized Difference Sequences by a Compact Operator in Probabilistic \(n\)-Normed Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v15i5.2836

Keywords:

Rough convergence, Rough limit points, Probabilistic n-normed space, Compact linear operator

Abstract

Using compact operator in probabilistic \(n\)-normed spaces, we develop and investigate the notion of rough convergence for  generalized difference sequences. In relation to rough convergence in probabilistic \(n\)-normed spaces, certain fundamental conclusions regarding the concept of rough limit points for a difference sequence are defined.

Downloads

Download data is not yet available.

References

C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Mathematicae 46 (1993), 91 – 98, DOI: 10.1007/BF01834000.

A. Asadollah and N. Kourosh, Convex sets in probabilistic normed spaces, Chaos, Solitons & Fractals 36(2) (2008), 322 – 328, DOI: 10.1016/j.chaos.2006.06.051.

A. K. Banerjee and A. Paul, Rough I-convergence in cone metric spaces, Journal of Mathematical and Computational Science 12 (2022), 78, DOI: 10.28919/jmcs/6808.

A. K. Banerjee and R. Mondal, Rough convergence of sequences in a cone metric space, The Journal of Analysis 27 (2019), 1179 – 1188, DOI: 10.1007/s41478-019-00168-2.

G. Constantin and I. Istratescu, Elements of Probabilistic Analysis With Applications, Mathematics and its Applications Sereis, Vol. 36, Springer, xii + 476 pages (1989), URL: https://link.springer.com/book/9789027728388.

E. Dündar and C. Çakan, Rough I-convergence, Demonstratio Mathematica 47(3) (2014), 638 – 651, DOI: 10.2478/dema-2014-0051.

N. Demir and H. Gümü¸s, Rough convergence for difference sequences, New Trends in Mathematical Sciences 2(8) (2020), 22 – 28, DOI: 10.20852/ntmsci.2020.402.

M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bulletin of the Malaysian Mathematical Sciences Society 23(1) (2000), 25 – 32, URL: http://math.usm.my/bulletin/pdf/v23n1/v23n1p3.pdf.

M. Et and F. Nuray, ∆m-statistical convergence, Indian Journal of Pure and Applied Mathematics 32(6) (2001), 961 – 969.

M. Et and R. Çolak, On a generalized difference sequence space, Azerbaijan Journal of Mathematics, Special Issue dedicated to the 67th birth anniversary of Prof. M. Mursaleen (2021), 106 – 116, URL: https://azjm.org/volumes/si_2021.html.

M. J. Frank, Probabilistic topological spaces, Journal of Mathematical Analysis and Applications 34(1) (1971), 67 – 81, DOI: 10.1016/0022-247X(71)90158-2.

I. Golet, On probabilistic 2-normed spaces, Novi Sad Journal of Mathematics 35(1) (2005), 95 – 102.

B. L. Guillén, J. A. R. Lallena and C. Sempi, A study of boundedness in probabilistic normed spaces, Journal of Mathematical Analysis and Applications 232(1) (1999), 183 – 196, DOI: 10.1006/jmaa.1998.6261.

B. L. Guillén, J. A. R. Lallena and C. Sempi, Completion of probabilistic normed spaces, International Journal of Mathematics and Mathematical Sciences 18(4) (1995), 649 – 652, DOI: 10.1155/S0161171295000822.

E. Kamber, Intuitionistic fuzzy I-convergent difference sequences spaces defined by compact operator, Facta Universitatis (Nis), Series: Mathematics and Informatics 37(1) (2022), 485 – 494, DOI: 10.22190/FUMI200810033K.

G. Karabacak and A. Or, Rough statistical convergence for generalized difference sequences, Electronic Journal of Mathematical Analysis and Applications 11(1) (2023), 222 – 230, DOI: 10.21608/ejmaa.2023.285269.

M. Kaur and M. Chawla, On generalized difference rough ideal statistical convergence in neutrosophic normed spaces, Neutrosophic Sets and Systems 68 (2024), 287 – 310, DOI: 10.5281/zenodo.11479539.

M. Kaur, M. Chawla and R. Antal, Rough ideal statistical convergence via generalized difference operators in intuitionistic fuzzy normed spaces, Communications in Mathematics and Applications 15(1) (2024), 221 – 241, DOI: 10.26713/cma.v15i1.2423.

H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

E. Kreyszig, Introductory Functional Analysis With Applications, John Wiley and Sons, xiv + 688 pages (1978).

P. Malik and M. Maity, On rough statistical convergence of double sequences in normed linear spaces, Afrika Matematika 27(1) (2013), 89 – 99, DOI: 10.1007/s13370-015-0332-9.

K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences USA 28(12) (1942), 535, DOI: 10.1073/pnas.28.12.535.

S. K. Pal, D. Chandra and S. Dutta, Rough ideal convergence, Hacettepe Journal of Mathematics and Statistics 42(6) (2013), 633 – 640.

H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numerical Functional Analysis and Optimization 24(2003), 285 – 301, DOI: 10.1081/NFA-120022923.

H. X. Phu, Rough convergence in normed linear spaces, Numerical Functional Analysis and Optimization 22(1-2) (2001), 199 – 222, DOI: 10.1081/NFA-100103794.

M. R. Rahmat, M. Noorani and M. Salmi, Probabilistic n-normed spaces, International Journal of Statistics & Economics 1(S07) (2008), 20 – 30.

B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Courier Corporation, 336 pages (2011).

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, DOI: 10.2140/pjm.1960.10.313.

C. Sempi, A short and partial history of probabilistic normed spaces, Mediterranean Journal of Mathematics 3(2) (2006), 283 – 300, DOI: 10.1007/s00009-006-0078-6.

A. N. Serstnev, The notion of random normed space, Doklady Akademii Nauk SSSR 149 (1963), 280 – 283.

Downloads

Published

31-12-2024
CITATION

How to Cite

Kaur, M., & Chawla, M. (2024). Rough Convergence for Generalized Difference Sequences by a Compact Operator in Probabilistic \(n\)-Normed Spaces. Communications in Mathematics and Applications, 15(5), 1503–1513. https://doi.org/10.26713/cma.v15i5.2836

Issue

Section

Research Article