\(\Delta^m\)-Statistical Convergence in Intuitionistic Fuzzy Metric Spaces

Authors

DOI:

https://doi.org/10.26713/cma.v15i5.2750

Keywords:

Statistical convergence, Difference sequence, Generalized difference sequence, Intuitionistic fuzzy metric space

Abstract

In this study, we propound statistical convergence and statistical Cauchy sequences for generalized difference sequences in intuitionistic fuzzy metric spaces and establish a Cauchy convergence criterion for this novel notion of convergence. Furthermore, we offer an exhaustive characterization of the mentioned notions of generalized difference sequences. Lastly, we discuss whether the phenomena should be further investigated.

Downloads

Download data is not yet available.

References

R. Antal, M. Chawla, V. Kumar and B. Hazarika, On ∆m-statistical convergence double sequences in intuitionistic fuzzy normed spaces, Proyecciones Journal of Mathematics 41(4) (2022), 697 – 713, DOI: 10.22199/issn.0717-6279-4633.

K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986), 87 – 96, DOI: 10.1016/S0165-0114(86)80034-3.

P. Erdos and G. Tenenbaum, Sur les densités de certaines suites d’entiers, Proceedings of the London Mathematical Society s3-59(3) (1989), 417 – 438, DOI: 10.1112/plms/s3-59.3.417.

M. Et and R. Çolak, On some generalized sequence spaces, Soochow Journal of Mathematics 4 (1995), 377 – 386.

M. Et and F. Nuray, ∆m-statistical convergence, Indian Journal of Pure and Applied Mathematics 32(6) (2001), 961 – 969.

H. Fast, Sur la convergence statistique, Colloquium Mathematicum 2(3-4) (1951), 241 – 244, URL: 10.4064/cm-2-3-4-241-244.

A. R. Freedman and J. J. Sember, Densities and summability, Pacific Journal of Mathematics 95(2) (1981), 293 – 305, DOI: 10.2140/pjm.1981.95.293.

A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64(3) (1994), 395 – 399, DOI: 10.1016/0165-0114(94)90162-7.

O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12(3) (1984), 215 – 229, DOI: 10.1016/0165-0114(84)90069-1.

G. Karabacak and A. Or, Rough statistical convergence for generalized difference sequences, Electronic Journal of Mathematical Analysis and Applications 11(1) (2023), 222 – 230, DOI: 10.21608/EJMAA.2023.285269.

H. Kizmaz, On certain sequence spaces, Canadian Mathematical Bulletin 24(2) (1981), 169 – 176, DOI: 10.4153/CMB-1981-027-5.

J. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika 11(5) (1975), 334 – 336, URL: http://eudml.org/doc/28711.

I. J. Maddox, Elements of Functional Analysis, 2nd edition, Cambridge University Press, Cambridge, 256 pages (1970).

H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Transactions of the American Mathematical Society 347 (1995), 1811 – 1819, DOI: 10.1090/S0002-9947-1995-1260176-6.

J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22(5) (2004), 1039 – 1046, DOI: 10.1016/j.chaos.2004.02.051.

T. Šalát, On statistically convergent sequences of real numbers, Mathematica Slovaca 30(2) (1980), 139 – 150, URL: http://dml.cz/dmlcz/136236.

I. J. Schoenberg, The integrability of certain functions and related summability methods II, The American Mathematical Monthly 66(7) (1959), 562 – 563, DOI: 10.1080/00029890.1959.11989350.

B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal of Mathematics 10(1) (1960), 313 – 334, DOI: 10.2140/pjm.1960.10.313.

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicum 2 (1951), 73 – 74.

B. P. Varol, Statistically convergent sequences in intuitionistic fuzzy metric spaces, Axioms 11(4) (2022), 159, DOI: 10.3390/axioms11040159.

L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965), 338 – 353, DOI: 10.1016/S0019-9958(65)90241-X.

A. Zygmund, Trigonometrical Series, 3rd edition, Volumes I & II (combined), Cambridge University Press, Cambridge (2003), DOI: 10.1017/CBO9781316036587.

Downloads

Published

31-12-2024
CITATION

How to Cite

Or, A., Antal, R., & Özcan, A. (2024). \(\Delta^m\)-Statistical Convergence in Intuitionistic Fuzzy Metric Spaces. Communications in Mathematics and Applications, 15(5), 1469–1480. https://doi.org/10.26713/cma.v15i5.2750

Issue

Section

Research Article