Existence of Solutions of Mixed Variational-like Inequalities and Gap Functions

Authors

DOI:

https://doi.org/10.26713/cma.v15i5.2381

Keywords:

Gap function, Pseudomonotonicity, Strongly monotone, Lipschitz continuous

Abstract

 In this work, a gap function and an extended gap function are introduced, which gives rise to an optimization problem formulation to  mixed variational-like inequalities. Furthermore, a convex lower bound to an extended gap function for Stampachhia and Minty mixed variational-like inequality problems is developed. The results presented in this paper generalize some well-known results of several authors, which play a significant role in the theory of variational inequalities.

Downloads

Download data is not yet available.

References

Q. H. Ansari and J. C. Yao, Generalised variational-like inequalities and a gap function, Bulletin of the Australian Mathematical Society 59(1) (1999), 33 – 44, DOI: 10.1017/S0004972700032573.

G. Auchmuty, Variational principles for variational inequalities, Numerical Functional Analysis and Optimization 10(9-10) (1989), 863 –874, DOI: 10.1080/01630568908816335.

C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, Wiley-Blackwel, New York, 462 pages (1984).

F. E. Browder, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, The Proceedings of the National Academy of Sciences (PNAS) 56(2) (1966), 419 – 425, DOI: 10.1073/pnas.56.2.419.

X. P. Ding, Generalized variational-like inequalities with nonmonotone set-valued mappings, Journal of Optimization Theory and Applications 95 (1997), 601 – 613, DOI: 10.1023/A:1022673922484.

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physiqe, Dunod, Paris, xx + 387 pages (1972).

F. Giannessi, Separation of sets and gap functions for quasi-variational inequalities, in: Proceedings of the International School of Mathematics “G. Stampacchia”, 19th Course on Variational Inequalities and Network Equilibrium Problem (June 19-15, 1994, Erice, Italy), F. Giannassi and A. Maugeri (editors), Plennum Press, New York, pp. 101 – 121 (1995).

A. Gibali and Salahuddin, Error bounds and gap functions for various variational type problems, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 115 (2021), article number 123, DOI: 10.1007/s13398-021-01066-8.

S.-M. Grad and F. Lara, Solving mixed variational inequalities beyond convexity, Journal of Optimization Theory and Applications 190 (2021), 565 – 580,DOI: 10.1007/s10957-021-01860-9.

P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Mathematica 115 (1966), 271 – 310, DOI: 10.1007/BF02392210.

N. V. Hung, S. Migórski, V. M. Tam and S. Zeng, Gap functions and error bounds for variational–hemivariational inequalities, Acta Applicandae Mathematicae 169 (2020), 691 – 709, DOI: 10.1007/s10440-020-00319-9.

J. Jahn, Introduction to the Theory of Nonlinear Optimization, 3rd edition, Springer, Berlin — Heidelberg, x + 292 pages (1994), DOI: 10.1007/978-3-540-49379-2.

A. Khaliq and S. Y. Wu, Variational like inequalities and gap functions, Nonlinear Analysis Forum 10(1) (2005), 1 – 11.

T. Larsson and M. Patriksson, A class of gap functions for variational inequalities, Mathematical Programming 64 (1994), 53 – 79, DOI: 10.1007/BF01582565.

C. Lescarret, Cas d’addition des applications monotones maximales dans un espace de Hilbert, Comptes Rendus de l’Académie des Sciences, Paris 261 (1965), 1160 – 1163 (French).

P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities, SIAM Journal on Optimization 9(1) (1998), 179 – 189, DOI: 10.1137/S1052623496309867.

J. Parida, M. Sahoo and A. Kumar, A variational like inequality problem, Bulletin of the Australian Mathematical Society 39(2) (1989), 225 – 231, DOI: 10.1017/S0004972700002690.

G. Ruiz-Garzón, R. Osuna-Gómez and J. Ruiz-Zapatero, Mixed variational inequality intervalvalued problem: Theorems of existence of solutions, Taiwanese Journal of Mathematics 26(6) (2022), 1257 – 1280, DOI: 10.11650/tjm/220503.

H. Scarf, The approximation of fixed points of a continuous mapping, SIAM Journal on Applied Mathematics 15(5) (1967), 1328 – 1342, DOI: 10.1137/0115116.

A. H. Siddiqi, Q. H. Ansari and R. Ahmed, On generalized variational-like inequalities, Indian Journal of Pure and Applied Mathematics 26 (1995), 1135 – 1141.

A. H. Siddiqi, A. Khaliq and Q. H. Ansari, On variational-like inequalities, Annales des sciences mathématiques du Québec 18 (1994), 95 – 104.

Sonia and R. D. Sarma, Generalized vector quasi-variational-like inequality problem: A new approach, Rendiconti del Circolo Matematico di Palermo Series 2 72 (2023), 3681 – 3694, DOI: 10.1007/s12215-022-00854-4.

G. Stampacchia, Formes bilinearies coercivities sur les ensembles convexes, Comptes Rendus de l’Académie des Sciences, Paris 258 (1964), 4413 – 4416.

G. Stampacchia, Variational inequalities: Theory and applications of monotone operators, Proceedings of NATO Advanced Study Institute, Venice, (1968), 101 – 192.

S. Ullah and M. A. Noor, An efficient method for solving new general mixed variational inequalities, Journal of Inequalities and Special Functions 11(3) (2020), 1 – 9.

Z.-B. Wang, Z.-Y. Chen and Z. Chen, Gap functions and error bounds for vector inverse mixed quasi-variational inequality problems, Fixed Point Theory and Applications 2019 (2019), Article number: 14, DOI: 10.1186/s13663-019-0664-5.

N. Yamashita, K. Taji and M. Fukushima, Unconstrained optimization reformulations of variational inequality problems, Journal of Optimization Theory and Applications 92 (1997), 439 – 456, DOI: 10.1023/A:1022660704427.

D. L. Zhu and P. Marcotte, An extended descent framework for variational inequalities, Journal of Optimization Theory and Applications 80 (1994), 349 – 366, DOI: 10.1007/BF02192941.

Downloads

Published

31-12-2024
CITATION

How to Cite

Ram, T., & Bhagat, Z. (2024). Existence of Solutions of Mixed Variational-like Inequalities and Gap Functions. Communications in Mathematics and Applications, 15(5), 1459–1467. https://doi.org/10.26713/cma.v15i5.2381

Issue

Section

Research Article