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1. Introduction

Universal algebra is a branch of mathematics which can be applied to theoretical computer
science. It can be used to describe the abstract data type. For example, colors, as we know all
colors can be created by mixing the primary colors together. If we let the mixing of two colors
and the mixing ratio be the operations and the collection of all colors and the amount of each
color added be the base sets, then we can explain this situation using many-sorted algebra.
For the usual definition of algebra, when we speak about an algebra, we always imagine an
algebra which has only one base set. It is very interesting to study an algebra which has more
than one base set and all of operations can be defined on different base sets. The concept of
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many-sorted algebras was introduced in 1970 by G. Birkhoff and John D. Lipson [1]. A vector
space 7 over field F is one of examples of many-sorted algebra.

One of the most important study in Universal algebra is to classify algebras into varieties
and to classify varieties into hypervarieties. A variety 7 is a class of algebras satisfying some
equations. That means there is a class of equations K such that every equation in K holds for
all algebras in 7. In some cases, there are some other equations which hold for all algebras
in such variety, although they do not belong to K. This can be happenned because when we
substitute operations of any equation in K with terms, the result is still an equation which
holds for all algebra in #'. In this case, 7 is called a hypervariety. So, we can classify varieties
into hypervarieties.

In one-sorted algebra, there are many papers focus on hypersubstitution and hyperidentity.
In 2008, K. Denecke and S. Lekkoksung introduced the concept of terms and hypersubstitutions
in many-sorted algebras, they proved some properties of hypersubstitutions and characterized
the solid varieties of many-sorted algebras (see in [2,3]).

Let I be a nonempty set, I*:= U I, X< I* xI and X, :=XnI""!. For y € I*, let y(j) denote

n=1

the j-th component of y. For i € I, let X,,(i) :={y € Z,,| y(m + 1) = i} and 2(i) := oLj (7). We set
1

n=

A G):={ae ™ an+1) =i}, AG):= CL)JO An(i) and A := U AQG).

n=1 i€l
Let A :=(A;);jc; which is called an I-sorted set or an I-indexed family of sets, where A;

is a set of elements of sort i of A, for i € I. A structure & := (A,((f}‘,%)k)keKy,yez) is called an
I-sorted Z-algebra where ff tAp, x...x Ay, — A; is a mapping which is called an I-sorted
n-ary operation on A, where y:=(k1,...,k,,1) € Z,(i) and K, be the set of indices with respect
to y. Denote Alg(Z) the set of all I-sorted X-algebras.

Example 1.1. A vector space 7 over field F':

The structure 7 := ({V,F}, {+é L1y -é 1 1)}) is an I-sorted X-algebra.

Definition 1.2. Let I be an indexed set and n € N*. Let X := (X;"))iel which is called an
I-sorted set of n variables or an n-element I-sorted alphabet, where X E”) ={x;1,%i2,-..,%in},
i €I and let X :=(X;);e; which is called an I-sorted set of variables or an I-sorted alphabet,
where X; = {x;1,%;2,%;3,...}, L € I. Let ((fy)k)keKy,yeZ be a set of I-sorted operation symbols. Then
for each i € I, a set W, (i) which is called the set of all n-ary Z-terms of sort i, is a set that
inductively defined as follows:

1) Wii)=X",
2) W @) = WP Ufy@ryseestr,) |y = (R1,... kg, 0) € Z, tr;, € Wi(E)}, | €N. Here we
inductively assume that the set W;'(i) are already defined for sort i € I.

Then W, (i) := | W]'(0). Let W(i) := | W,(i) which is called an I-sorted set of all Z-terms of
=0 neN
sort i. The set Wx(X) :=(W(i));¢s 1s called an I-sorted set of all X-terms and its elements are

called I-sorted X-terms.
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The aim of this paper is to characterized the strongly solid varieties by using the
theory of conjugate pairs of additive closure operators. We first introduce the concept of Z-
generalized hypersubstitutions in many-sorted algebras and we need a monoid structure on
a set of Z-generalized hypersubstitutions as a first step. Using the concept of generalized
hypersubstitutions for one-sorted algebras which was introduced by Leeratanavalee and
Denecke [4], we defined a X-generalized hypersubstitution as follow;

For each i € I, a X-generalized hypersubstitution of sort i is an arbitrary mapping
o; :Afy 1y € ZG)} — W().
The set of all Z-generalized hypersubstitutions of sort i is denoted by X(i)-Hyps. We call
0 :=(0;)ier an I-sorted X-generalized hypersubstitution and let X-Hypq := (Z(i)-Hypg)ic1 be
the set of all I-sorted Z-generalized hypersubstitutions. Define the superposition operation
Sp:WGE)x W(kq) x...x W(k,) — W(),
for B=(k1,...,ky,1) € A, by the following steps:
(1) If ¢t=x;j€X;, then
(i) Splx;j,t1,...,tp))=x;jifi#k;, V j,
(11) Sﬁ(xij,tl,...,tn)Z tj if z =kj, l1<j<n,
(1ii) Sﬁ(xij,tl,...,tn) =Xjj if j>n.
(2) If t =f,(s1,...,8m) € W(), for y =(i1,...,i;m,0) € X and s, € W(iy), 1< q <m. Assume that
Sﬁq(sq,tl,...,tn) with By = (k1,...,kp,1) € A(iy) are already defined, then for t; € W(k;),
1<j<n,

Sp(fy(s1,...s8m)t1,..stn) := [ (Sp(s1,t1,.. ., t0), ..., 8B, (Sm,t1,. .., En)).

Every o, € Z(i)-Hypg can be extended to a mapping ¢; : W(i) — W(i) which is definded by the
following steps:

(1) 6i[xij] =Xij, for Xij EXi,

(2) é’i[fy(tl, s tp)] = Sy(o'i(fy),é'kl[tl], .o ,6kn [.D where Y = (kl, . ,kn, 1) and tj € W(kj),

1=j=n. Assume that G;,[¢;] are already defined.

So we can define a binary operation og on X(i)-Hypg by (01); og (09); := (01); o (09);, for
(01)i,(02); € 2(i)-Hyps and o is the usual composition of mappings. Let (0;4); € Z()-Hypg
which maps each operation symbol f, to the Z-term f,(xz,1,...,%z,,), for y =(k1,...,kp,1) € Z(2),
Le., (0;q)i(fy) = fy(Xp 1, Xkyn)-

In general, there are many examples which show that operation og is not associative. That
is, (Z(i)-HypG,oz;,(Uid)i) is not a monoid. So, we will focus on special properties which make
this structure being a monoid.

For each i € I and fixed n e N with n =2, let Z"(j) € (i) be a set of operation structures
with all of operation symbols of sort i have the same arity n and the same structure. That is
{y}=Z(i) and each k € K, (fy) is n-ary.

We can show that (Z'Il’”(i)-HypG, og,(aid)i) forms a monoid by the following:
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Proposition 1.3. For (01);,(02);,(03); € Zm’n(i)-HypG and a=(k1,...,kn,i)€EA. Then
(1) 6,[Sat,t1,...,t0)1=8a(6;lt],0p,[t1],...,0p,[tn]),
(2) ((01); 0 (09);)"=(61)i ©(62);,
(3) ((a1)iof (02)i) ok (3); = (1); o (92); o (073);),

(4) (01)i % (0i0)i = (0iq)i o (01); = (01);.
Theorem 1.4. (Z!"(i)-Hypg, oL, (0:q);) is a monoid.

Next, we introduce the concept and give some properties of X-term operation in many-sorted
algebras.

Definition 1.5. Let n,q € N* with 1 < g <n. The g-th n-ary projection operation with input
w=(k1,...,k,) on o7 is a mapping

w,A |
eq Ap x...xAp, —A,

which is defined by e‘g’A(al, c@p)=ag.

Let o7 € Alg(¥) be a X-algebra and i € I. For fixed n e N, let f; :XE”) — A; be an evaluation
mapping. We can extend each f; to a homomorphism f; : W(i) — A; which is defined by

filxij), ift=x;;€eX;and1<j<n,
fi=x xij, ift=x;;€ X; and j >n,
£ (@), fi ), it = Flts, . tm) W@, y=(i1,...,im,10).
We set f :=(f;);er and AXY = {f :==(fier I fi :XE”) — A;,foriel}.
Let ¢ € W(i), define t7 : AX" — A; by t7(f) = fi(t), that is

Xij> ifthij andj>n,

t7(f)= o (i o A (o o -
fY (t1 (f),...,tm(f))::fy 7, ..t ), 1ft:fy(t1,...,tm)

with y =(i1,...,im,10).
The operation ¢ is called the Z-term operation on .7 induced by the Z-term ¢ of sort i and
denote W (i) the set of all -term operations on </ induced by the Z-term of sort ;.

Definition 1.6. The superposition operation
S W@ x W (k1) x ... x W (k) — W (D),
for p=(k1,...,kn,1) € A, is defined inductively by the following steps:
(1) If t=x;j€ X;, then

() Spa,t7,....t;)=x if i #k;,¥j and,

ij° 1
(ii) sﬁ(xfj,tff,...,tf):t;?f ifi=kj;,1<j<nand,
(iii) sﬁ(ng,r;f,...,tf):x;f:xij if j>n.

Communications in Mathematics and Applications, Vol. 9, No. 4, pp.[677 , 2018



Strongly Solid Varieties in Many-Sorted Algebras: D. Chumpungam and S. Leeratanavalee 681

(2) If t=fy(s1,...,8n) € W(), for y =(i1,...,im,1) €Z and s, € W(iy), 1< q <m. Assume that
S;ﬁi(s‘g’{,t“f{,...,tf) with B, =(k1,...,k,i) € A(iy) are already defined, then

ST (fy(s1essm)” b7 ot )= 17 S 7ty o), S (st D),
fort;e W(k;),1<j<n.

Lemma 1.7. Let &7 € Alg(Z) and a =(k1,...,km,1) E A,

ST .. %)= (Salt,t1,...,tm)7.

Proof. We prove by induction on the complexity of X-term ¢ of sort i.
Ifthij € X(),

Case 1: i #kj,
ST 4y, t)=ST 17 .t =a = (Salxij b1, tm))”
=(Salt,t1,....tm))7.
Case2: i=Fkj,1<j<m,
STty .. tm)=ST b7t =t =(Salxijst1,..., tm))”

ij?
=(Salt,t1,...,.tm).

Case 3: j>m,
STty .. o) =8T 7 ..t =2 = (Salxij b1, .o tm))”

= (Salt,t1,....,tm)7.

Ift=fy(s1,...,8,) e W) with y =(i1,...,i,,0) € sHln(;), Assume that
Sar syt tm) = Say(g,t1,0. 0 tm)) 7,
for all @y =(k1,...,km,iq). Then,
ST b7 ..t =S (fy(s1,.. st oo ti0)
= ST syt ot S st )
= £ (S a1t st o Sy Sty tm)?)
= (F,(Say(S1,t1,-- o tm)y o r Sy (Snr b1, oyt )™
= (SalFylst,eesSn)t1, ..oy tm))?
=(Sat,t1,....,tm)".
So SZ 7 7 ... tZ)=(Salt,t1,. .., tm)?. 0

Let & := (A,((ff/)k)keKy,yez) be a Z-algebra and o € Z'IL”-HypG. The X-algebra derived
from </ by o is a Z-algebra which consists of A together with family of operations

(@i PR ek, yesiy, i-e.,
o () = (A, (0 (F ) Dhek, yez))-
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Lemma 1.8. Let <7 € Alg(2) and o € 21V"-Hyp. For t € W(i), we have t°7) = (6;[¢1)7 .

Proof. For f e AX “ We prove by induction on the complexity of ¢ € W(7).
Ift=x;;€X;,
N =27 = 27 () = @il DY () = @17 (6.
If t = f,(s1,...,8) € W(), for y = (i1,...,in,i) € " and s, € W(i,),1 < g <n, and assume that
57 = (6;,[sq1)” . Then

tU(‘Q{)(f) — (fy(sl, . ,sn))g(”@{)(f) — ff(ﬂ)(s(lr(ﬂ), B .’sg(%))(f)
= 0i(F)? (61,8107 ..., (51, [s, DY NF)
= (0i{(f;N64,[s1], .., 61, s, D)7 (f)
= (Sy(ai(fy),61,[51),-.., 61, [, )7 (F)
= (6ilfy(s1,--,8)D7 (F) = (6:[£D7. 0

Lemma 1.9. Let o7 € Alg(X) and 01,02 € Z'Il’”-HypG. Forielandye s (), then
(o Di(f )72 D = ((09); oL (G ))(f) 7.

Proof. By the previous lemma,

(oDi(F)) 2 = (62l DD = ((02); ok (TN . 0

For 01,09 € 2/"-Hyp, we define 01003 := (((01); 04 (02)))ier.

Lemma 1.10. Let <7/ € Alg(X) and 01,09 € Zm’n-HypG. Then
o1(o2(A)) = (02001 ().

Proof. From the previous lemma,
o1(02()) = (o (0D (F; 1) ek, yesiiier)
= (o ,(((02); of; (U1)i)(ff{)k)’d)keKy,yez(i),iez)

=(02001)(A). O

Theorem 1.11 ([2])). Let <7 € Alg(X), then we have 0;3(F) = o .

2. Strong Hyper Identities in Many-sorted Algebra

Let of = (A,(f;z{)yez) be a X-algebra and i € I. The Z-equation s; =; t; is said to be a X-identity
of sort i € o7 if s =7, i.e., if the induced Z-term operations are equal. In this case we write
A i si =it

Let K cAlg(X) and L(i) € W(i)?. We write K |=; s; =; t; if s; =; t; is satisfied as Z-identity in
o/ €K and &/ |=; L(i) if s; =; t; is satisfied as Z-identity in every o7, for all (s;,#;) € L(i).
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The relation |=;< Alg(Z) x W(i)? induces a Galois connection (X(i)-Id , >(i)-Mod) between
Ko< Alg(Z) and L(i) € W(i)? which is defined as follows:
Y(i)-IdKo = {(s;, ;) e W(i)? | o |=; s; =; t;,Y.o/ € Ko},
2(i)-Mod L(i)={</ € Alg(Z) | o |=; s; =i t;,Y(s;,t;) € L(i)}.

Definition 2.1.Let ¥ < Alg(Z) and L(i) € W(i)2. ¥ is said to be a X-variety of sort i
if ¥ = Z(1)-Mod Z(i)-Id 7 and L(i) is said to be a X-equational theory of sort i if L(i) =
2(1)-Id 2(i)-Mod L(7).

Definition 2.2. Let </ € Alg(X). A Z-identity s; ~; t; is said to be a Z-strong hyperidentity of
sort i in o7 if o |=; 61s;]1=; 61¢;], for all o € ZH(i)-Hyp. In this case we write &7 |=; s; =;t;.
2-hypg
We define operator y=4 and y>£® on Alg(Z) and W(i)?, respectively, by

Kol = Uy,
JZfEK()

EOIL@I= U T EOls =i t]
(s;,t;)EL(1)

where y>A[o/]:= {0() | 0 € ZMV"-Hyps) and y>FO[s; =; t;1:= {6[s;]1=; 6:[t;1] o; € 217 (0)-
Hypg}.

Straight from definition of y*4 and y*£®

Z-E()

,we can show that (y y*4) is a conjugate

pair of additive closure operators with respect to the relation |=; by the following propositions:

Proposition 2.3. Let Ko,K1,Ks CAlg(Z) and L(i),L1(i),L2(i) < W(G)2. Then
(1) Ko< x**[Ko,

(2) If K1 S Kg, then y* A[K1]1< x> A[K2],

3) x> AKol= x> x> 1Ko,

4) LG) < x> EOILG),

(5) If L1(i) € Lo(i), then x> ED[L ()] < x> ED[Lo()),

(6) > FOILG)] = y> FO > EOL@N.

This shows that y>4 and y> %@ are closure operators on Alg(X) and W(i)?, respectively.
By definition, both operators are additive. The next proposition shows that (y>£® y*4)is a
conjugate pair.

Proposition 2.4. Let <7 € Alg(Z),(s;,t;) € W(i)? and o € Z'""-Hyp . We have
o(d)Eisi=it; <= i Gilsil=; 6;lt;].
Using the property of closure operator, the set of all fixed points {Ko € Alg(2) | y*4[Ko] = Ko}

and {L(i) € WG)? | yZ ED[L()] = L)} form complete sublattice of P(Alg(Z)) and P(W(i)?),
respectively.
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The relation |=; induces a Galois connection (HX(i)-Id ,HZX(i)-Mod) between Alg(X) and
Z-hypg
W(i)? which is defined by

HE(i)-IdKo={(s;,t) e WG | o/ |=; si=;t;,Vof €K},
Z-hypg

HZX(i)-Mod L(i) ={«/ € Alg(2) | &/ |=; si=it;,V(s;,t;) € L)},
2-hypg

where Ky cAlg(Z) and L) < W()2.

The two closure operators HX(i)-Mod HXZ(i)-Id and HZX(i)-Id HX(i)-Mod are obtained by
above Galois connection and their fixed points, {Ko S Alg(Z) | HX(i)-Mod HX(i)-Id K¢ = K¢} and
(LG)SW@G)2 | HZ(G)-Id HZ(i)-Mod L(i) = L(i)}, form complete lattice.

Definition 2.5. Let 7 € Alg(Z) and M be a submonoid of Z/"(i)-Hyp. ¥ is called M-strongly
solid variety of sort i if for Z-identity s; =; ¢; of sort i in ¥ and for o € M, the X-equation
6ls;] =; 6[t;]holds in &7, for all &/ € V. If M = Zm’”(i)-HypG, ¥ is said to be a strongly

solid variety of sort i, i.e., ¥ |=; ZH"({)-Id¥. ¥ is called a X-strongly solid variety if
2-hypg
Y i ZHnG)-IdY, forallicl.
2-hypg

Example 2.6. Let I = {1}, T2 = {(1,1,1)} and i = 1. Let ¥ be a Z-variety of sort i with
2G)-1dY ={fa10(fa1n®11,%12),213) =i f1,1,1)(*11, f1,1,1)(x12,x13))}. Then 7 is a strongly solid
variety of sort i.

Proof. Letoe Zm’z(i)-HypG with o(f(1,1,1)) = ¢t1 € W(i). We show that
olfa1,0)(fa,,n(e11,x12),x13)1 =i 61f1,1,1)(x11, f1,1,1(x12,x13)] € Z(D)-Id V'
. Firstly,
olfa1,0(fa,1,n(®11,212),213)1 = S1.1,1)(0(f1,1,1)), 6 [ f(1,1,1) (%11, %12)], 6[x13])
=8Sa,1,00(f1,1,1)),Sa,1,1)(0(f1,1,1)),X11,%12),%13)

=81,1,0(t1,S@,1,0(t1,%11,%12),X13),

Oolfa1,n(x11, fa,1,)(x12, 21301 = S,1,1)(0(f(1,1,1)), 6[x11], 6[f(1,1,1)(x12,%13)])
=8Sa,1,0(t1,%x11,81,1,1(¢1,%12,%13)).
If t1 = x11, we get
olfa,1,n(fa,1,n(11,%12),x13)1 = S(1,1,1(*11,S(1,1,1)(*11, %11, X12), ¥13) = *11
and
olfa,1,0(x11, fa,1,0(x12, 21301 = S(1,1,1)(*11,%11,S(1,1,1)(*11, %12, %13)) = X171.
If t1 = x19, we have

olfa1,0(fa,1,)(x11,%12),x13)1=%x13
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and
olfa,1,n(x11, fa,1,1)(x12,213))1 =%13.
If t1 =x1 and & = 3,
olfa10(fa,1,(®11,212),x13)1=x12
and
6lfa1,0(x11, fia,1,0(x12,13) ] =% 18-
If t1 = fa,1,0(h1,he) with A1,k € W(i). Assume that
Sa1,1hj,6lfa1,1)(x11,x12)],213) =i S1,1,1)(h j, 211, 6[f1,1,1)(®12,x13)D) € Z()-Id V', j=1,2.
By induction on the complexity of Z-term ¢, we get
olfa,1,0(fa,1,)x11,%12),213)] = S(1,1,1)(f(1,1,00(h1,h2), S1,1,1)(f1,1,1(h1, h2), X11,%12),X13)
=f1,1,081,1,0(h1,S1,1,1)(f1,1,0(h1,h2),x11,%12),X13),
Sa1,0he,Sa,1,10)(fa,1,1)(h1,h2),x11,%12),%13))
= f,1,08a,1,0h1,%11,81,1,1)(f(1,1,1(R1,h2),x12,%13)),
Sa,1,n(h2,%11,S1,1,1)(f1,1,0(h1,h2),x12,%13)))
=Sa1,0(fa,1,0h1,h2),x11,81,1,1(fa,1,1(h1,h2),%12,%13))
=8(1,1,0(t1,%11,81,1,1)(t1,%12,%13))
=06[f1,1,1(x11, f(1,1,1(x12,%13))].

So 7 is a strongly solid variety of sort i. O

Now, we can apply the general theory of conjugate pairs of additive closure operators.

Theorem 2.7. Let ¥ be a Z-variety of sort i, the following conditions are equivalent:
(1) ¥ =HXZ(i)-Mod HZ(i)-Id V7,

2) yFAV1=7,

3) X()-IdYV =HZ)-Id Y,

4) yZEOZG)-Id ¥ 1=2G)-1dV

and, let L(i) be a Z-equational theory of sort i, the following are equivalent:

(1) LG)=HZ@)-Id HZ(i)-Mod L(i),

(2) > EOIL)]=LG),

(3) Z(i)-Mod L(i) = HZ(i)-Mod L(3),

(4) y=AIZ()-Mod L(i)] = 2(i)-Mod L(i).

3. 7-Normal Form Z-Generalized Hyper substitutions

In this section, we give the concept of V-normal form Z-generalized hypersubstitution which is
useful for testing a strongly solid Z-variety.
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Definition 3.1. Let ¥ be a X-variety of sort i. o; € ZVI"(i)-Hyp is called a ¥ -proper -
generalized hypersubstitution of sort i if for every Z-identuty s; =; ¢; in ¥, the X-identity
Gils;1=; 6;[t;]1holds in 7.

Denote Pg(4// ) a set of ¥ -proper X-generalized hypersubstitutions of sort i. We see that
P.(¥V) < Z1(i)-Hyp and PL(Y) # @, since (0,q); € PL(V).
Let 7 be a X-variety of sort i.

Lemma 3.2. (PL(¥),0L,,(0iq);) is a submonoid of (211"(i)-Hypg, ok, (0iq);).

Proof. Let (01);,(02); €Pé(7/) and (s, ¢;) € W(i)? with ¥ |=; s; =; t;. We have

(01); 0 (02)1) [si] = ((51); ©(62))s;]

=(01)il(02)ils;:]1]

=(61)il(G2)il¢;]1]

= ((01)i o4 (09);)'[¢;1.
So Pé(”/ ) is closed under og and we see that o;4 € P(i}(“// ). We can conclude that
(Pé(”f/), 08,(01'01)1') is a submonoid of(Z'Il’”(i)-HypG,og,(aid)i). O

Now, we define relation ~yg(;) on Z'Il’”(i)-HypG by for 01,09 € Z'Il’”(i)-HypG,
01 ~vGi) 02 <= VIFioify)=;of)), VY yeZ@).

It’s easy to prove that the relation ~yg(;) is an equivalence relation on L |”’“(i)-HypG, but it may
not be a congruence relation.

Theorem 3.3. For 01,09 € XV"(i)-Hyp. The following are equivalent:
(1) 01 ~vaai) o2
(2) V|5, 61lt] =; G2lt].

Proof. First part, we prove by induction on the complexity of Z-term ¢ € W(i).
If t =x;; € X;. Since 61lx;;1=x;; = 0alxijl, ¥ =i 61lx;j1 =i Galx;;].
Ift=f,(t1,...,tp) e WGE) with y = (iy,...,i,,0) € (g,
Assume that 7 |=;; (61);,[¢,1 = (62);,[t,1,Y].
O1lfy (1, ..., t2)1 = Sy(01(f)),(61)i,[21], ..., (61, [En])
= Sy(o1(fy),(62)i,[t1],...,(62)i, [¢n])
= Sy(02(f)),(62)i[t1],...,(62);,[¢n])
= 6alfy(ty,...,tn)l.

Therefore 7' |=; 61[¢] =; 62lt]. Conversely, let y = (iy,...,i,,1) € Sy, Put ¢ = fy(t1,...,tn). By
assumption, ¥ |=; 61[t] =; 62[¢]. That is for every &/ € ¥,

G1lfy(t 1.t )17 = Galfy(t1,..., 1)1

= SUo1(f,61,0t1)..., 65, [taD? = Syoa(f), 64, [t1], .., 64, [t D7
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= 87 (o1(f)7,6i,[t117,...,64,[ta)") = ST (027 61,1117 ..., 64, [£0]7)
= o1(f)? =aa(f)?
= A i o1(f)) =i oa(fy).
So ¥ |=; 61lt] =; 62lt]. O

Lemma 3.4. Let V' be a Z-variety of sort i. Then

(1) For 01,02 € 2()-Hypg with 01 ~yg) o2 and for s;,t; € W(i),
Vi 61lsil=; 61lt;] = V' |5, 62lsil=; 62lt;].

(2) For 01,02¢€ Z'IL’L(i)-HypG with 01 ~vG@) 02,
01€PL(V) &> g€ PL(I).

Proof. In the first part, since 01 ~yg() 02 and by the previous theorem, &1[s;] =; 62[s;] and
01lt;1=; 62lt;1 hold in 7. So we have ¥ |=; 6als;]=; 63lt;] (or o9 € Pé(”f/)). Conversely, we can
prove it in a similar way in the first part. O

Definition 3.5. Let 7 be a Z-variety of sort i and M be a submonoid of X"(i) - Hyp. Let
b M/~VG(L~)| w M be a choice function which chooses one Z-generalized hypersubstitution,
which is called a 7 -normal form Z-generalized hypersubstitution, from each equivalence class
of the relation ~vyg(), y and denote the set of 7 -normal form X-generalized hypersubstitutions
by N ().

¥ 1is called N(];I(”f/)-strongly solid if for Z-identity s; =; t; of sort i in " and for o € Ng[(”f/),
the Z-identity 6[s;]=; 6[t;]holds in o7, for all <7 € V.

We see that N é‘f (7)< M and it is not always a submonoid of X/ |’”(i)-HypG because the
product of any two elements in N (24 (7)) need not be in N (24 7).

Theorem 3.6. Let ¥ be a X-variety of sort i and M be a submonoid of 2" (i)-Hypg. For any
choice function ¢,

V' is M-strongly solid < 7V is N(JZJ (7)-strongly solid.
Proof. Assume that 7 is M-strongly solid. Since N g[ (YYesM, Vis N (];4 (7)-strongly solid.
Conversely, suppose that 7 is N, (];tl (7)-strongly solid. For Z-identity s; ~; ¢#; in ¥/, then
YV, 6ls;1=; 6[t;1,Vo e N(];{(”/). Let ¢’ € M. Then there exists o € Ng(”//) such that U~VG(i)|MO".
By the previous lemma, ¥ |=; 6'[s;]1~; 6'[t;]. So ¥ is M-strongly solid. O
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