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Abstract. One of the sets of differential equations that find applications in real life is the oscillatory
problems. In this paper, the oscillation criteria and computation of third order oscillatory differential
equations are studied. The conditions for a third order differential equation to have oscillatory
solutions on the interval I = [t0,∞) shall be analyzed. Further, a highly efficient and reliable one-step
computational method (with three partitions) is formulated for the approximation of third order
differential equations. The paper also analyzed the basic properties of the method so formulated. The
results obtained on the application of the method on some sampled modeled third order oscillatory
problems show that the method is computationally reliable and the method performed better than the
ones with which we compared our results.
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1. Introduction
One of the most challenging equations being encountered nowadays are the oscillatory
differential equations. This is because their solutions are composed of smooth varying and
‘nearly periodic’ functions, i.e. they are oscillations whose wave form and period varies slowly
with time (relative to the period), and where the solution is sought over a very large number of
cycles ([17]). For such problems, one cannot and does not want to follow the trajectories; instead
one resort to finding their approximate solutions or the computation of their quasi-envelops.
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Oscillatory problems have some of their Eigen values near the imaginary axis, and their
solutions are oscillation processes with slowly varying amplitudes. The difficulty of solving such
problems is explained by the necessity to ensure correct values of the amplitude and phase
angle over many periods.

In this research, we shall be interested in the analysis and computation of third order
oscillatory problems of the form,

y′′′(t)= f (t, y(t), y′(t), y′′(t)), y(t0)= y0, y′(t0)= y′0, y′′(t0)= y′′′0 , t ∈ [t0, tn] (1)

where t0 is the initial value/point, y0 is the solution at t0, f is continuous within the interval
of integration. It is assumed that equation (1) satisfies the existence and uniqueness theorem
of differential equations. It is also assumed that the solutions to equations of the form (1) are
bounded. It is important to state that a solution y(t)to equation (1) is said to be bounded if,

sup
t∈ℜ

‖y(t)‖ <∞ . (2)

Equation (1) has a wide range of applications in engineering, thermodynamics and other
real life problems. They are also applied in studying thin-film flows [7], chaotic systems [9],
electromagnetic waves [13], among other phenomenon.

A solution of equation (1) will be called oscillatory if it has infinity of zeros in (0,∞)and
non-oscillatory if it has but a finite number of zeros in this interval, [10]. An equation is
termed oscillatory if there exists at least one oscillatory solution and non-oscillatory if all its
solutions are non-oscillatory. This latter definition is necessary since an equation (1) may be
both oscillatory and non-oscillatory.

Some methods have been derived by authors to directly solve third order differential
equations of the form (1), see the works of [2–4, 13–15, 18]. Direct method for solving (1)
has been reported to be more efficient than the method of reduction to system of first order
differential equations ([1,2]).

Definition 1.1. A differential equation is said to be oscillatory if

(i) all the nontrivial solution of (1) have an infinite number of zeros (roots) on x0 ≤ x <∞
(see [11]), and

(ii) it has at least one oscillating solution ([5]).

Definition 1.2 ([12]). A computational method is said to be A-stable if the whole of the left-half
plane {z : Re(z)≤ 0} is contained in the region {z : |Re(z)| ≤ 1}, where R(z) is called the stability
polynomial of the method.

Definition 1.3 ([10]). The equation (1) is said to be of Class I (CI), if any of its solutions y(t) for
which y(a)= y′(a)= 0, y′′(a)> 0 (0< a <∞) satisfies y(t)> 0 in (0,a).

Definition 1.4 ([10]). The equation (1) is said to be of Class II (CI I), if any of its solutions y(t)
for which y(a)= y′(a)= 0, y′′(a)> 0 (0< a <∞) satisfies y(t)> 0 in (a,∞).
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Lemma 1.1. Let y(t) ∈ C3 ([t0,∞))> 0 be bounded for t ∈ [t0,∞). Then, y(t)> 0, y′(t)< 0, y′′(t)< 0
and y′′′(t)> 0 cannot hold for all t ≥ t0.
Note that C3 ([t0,∞)) are the set of continuous functions on the interval I ∈ [t0,∞).

2. Analysis of Oscillation Criteria for Third Order Oscillatory
Differential Equations

Equation (1) shall be rewritten as

y′′′(t)+ p(t)y′′(t)+ q(t)y′(t)+ r(t)y(t)= 0, y′n(t0)= yi
n, i = 0,1,2 (3)

where p(t), q(t) and r(t) are continuous functions on the interval I ∈ (a,∞).

Theorem 2.1. Let p(t)≥ 0, q(t)≥ 0, r(t)< 0 for t ∈ (a,∞) and∫ ∞

t0

r(s)ds =−∞, t0 > a . (4)

Then every bounded solution y(t) of (1) on t ∈ [t0,∞) is oscillatory on the interval I = [t0,∞).

Proof. Assume without loss of generality that y(t)> 0 be bounded on [t0,∞), t0 > a.
Firstly, we consider a situation where y′(t)> 0, t ≥ T ≥ t0

Integrating equation (3) between t0 and t, we obtain∫ t

t0

(
y′′′(t)+ p(t)y′′(t)+ q(t)y′(t)+ r(t)y(t)

)
dt

= y′′(t)+ p(t)y′(t)+ q(t)y(t)+
∫ t

t0

r(s)ds = k (5)

where the constant k is given by

k = y′′(t0)+ p(t0)y′(t0)+ q(t0)y(t0) .

Using equation (4), the conditions that p(t)≥ 0, q(t)≥ 0, r(t)< 0 and also the fact that y(t) is
bounded implies that y′′(t)→∞ as t →∞. Thus, y(t)cannot be bounded on t ∈ [t0,∞). This is a
contradiction.
Secondly, we consider a situation where y′(t)≤ 0 for t ≥ T ≥ t0.

Equation (3) can be written as

y′′′(t)=−p(t)y′′(t)− q(t)y′(t)− r(t)y(t)> 0 (6)

for t ≥ T using the conditions in the statement of the theorem. But, by Lemma 1.1, this is not
possible.
Thirdly, we consider the situation where y′(t) has infinitely many null points at which it changes
its signs. Let y(t)> k > 0, then for equation (5), we obtain y′′(t)> 0 for t ≥ T ≥ t0 and this implies
that y′(t) > 0 increases for t ≥ T . This is a contradiction with the case y′(t) being oscillatory.
Thus,

liminf
t→∞ y(t)= 0 . (7)
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Theorem 2.2 ([10]). If in the equation

y′′′(t)+ q(t)y′(t)+ r(t)y(t)= 0 (8)

2r(t)− q′(t)> 0
(
2r(t)− q′(t)< 0

)
, except at isolated points at which 2r(t)− q′(t) may vanish, then

equation (8) is of CI ((8) is of CI I ).

Proof. Suppose y(t) is the solution of equation (8) such that y(b) = y′(b) = 0 and assume that
equation (8) is not of Class I, that is, let t = a (a < b) be a zero of y(t). Multiplying equation (8)
by y(t) and integrating from a to b, we obtain[

y(t)y′′(t)− 1
2

y ′ 2(t)+ 1
2

q(t)y2(t)
]b

a
−

∫ b

a

(
q′(t)−2r(t)

)
y2(t)dt = 0 ,

− [
y′(a)

]2 =
∫ b

a

(
2r(t)− q′(t)

)
y2(t)dt . (9)

This contradiction completes the prove.

3. Formulation of the Computational Method

A one-step computational method of the form,

A(0)Y (i)
m =

1∑
i=0

( jh)(i)

i!
e i y(i)

n +h(3−i) [di f (yn)+biF(Ym)] (10)

for the computation of third order oscillatory problems (1) shall be formulated. In formulating
the method, we employ a power series approximate solution of the form,

y(t)=
r+s−1∑

j=0
a j t j (11)

where r and s are the numbers of collocation and interpolation points, respectively.

Equation (11) is differentiated three times and substituted into equation (10), that is,

f (t, y, y′, y′′)=
r+s−1∑

j=2
j( j−1)( j−2)a j t j−3 . (12)

A grid of one-steplength is considered in this paper with a constant step size h given by
h = tn+i − tn, i = 0,1 and off-step points at tn+ 1

4
, tn+ 1

2
and tn+ 3

4
.

Interpolating (11) at point tn+s, s = 1
4

(1
4

) 3
4 and collocating (12) at points tn+r , r = 0

(1
4

)
1, give

a system of nonlinear equation of the form,

T A =U (13)

where

A = [a0 a1 a2 a3 a4 a5 a6 a7]T

U =
[

yn+ 1
4

yn+ 1
2

yn+ 3
4

fn fn+ 1
4

fn+ 1
2

fn+ 3
4

fn+1

]T
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T =



1 tn+ 1
4

t2
n+ 1

4
t3
n+ 1

4
t4
n+ 1

4
t5
n+ 1

4
t6
n+ 1

4
t7
n+ 1

4

1 tn+ 1
2

t2
n+ 1

2
t3
n+ 1

2
t4
n+ 1

2
t5
n+ 1

2
t6
n+ 1

2
t7
n+ 1

2

1 tn+ 3
4

t2
n+ 3

4
t3
n+ 3

4
t4
n+ 3

4
t5
n+ 3

4
t6
n+ 3

4
t7
n+ 3

4

0 0 0 6 24tn 60t2
n 120t3

n 210t4
n

0 0 0 6 24tn 60t2
n+ 1

4
120t3

n+ 1
4

210t4
n+ 1

4

0 0 0 6 24tn 60t2
n+ 1

2
120t3

n+ 1
2

210t4
n+ 1

2

0 0 0 6 24tn 60t2
n+ 3

4
120t3

n+ 3
4

210t4
n+ 3

4

0 0 0 6 24tn 60t2
n+1 120t3

n+1 210t4
n+1


Solving (13) for a j , j = 0(1)7 which are constants to be determined and putting back into (11)
gives a one-step continuous computational method of the form

y(t)=α 1
4
(t)yn+ 1

4
+α 1

2
(t)yn+ 1

2
+α 3

4
(t)yn+ 3

4
+h3

[
1∑

j=0
β j(t) fn+ j +βs(t) fn+s

]
, s = 1

4

(
1
4

)
3
4

, (14)

where αs(t), β j(t) and βs(t)are expressed as functions of x with

x = t− tn

h
(15)

to obtain the continuous form as follows:
α 1

4
(t)= 8x2 −10x+3, α 1

2
(t)=−16x2 +16x−3, α 3

4
(t)= 8x2 −6x+1

β0(t)= 1
322560 (16384x7 −71680x6 +125440x5 −112000x4 +53760x3 −13216x2 +1354x−21)

β 1
4
(t)=− 1

80640 (16384x7 −64512x6 +93184x5 −53760x4 +13356x2 −5240x+609)

β 1
2
(t)= 1

53760 (16384x7 −57344x6 +68096x5 −26880x4 −1792x2 +2418x−441)

β 3
4
(t)=− 1

80640 (16384x7 −50176x6 +50176x5 −17920x4 +980x2 −32x−21)

β1(t)= 1
322560 (16384x7 −43008x6 +39424x5 −13440x4 +672x2 +10x−21)


Solving (14) for the independent solution gives a continuous computational method of the form

y(t)=
1∑

i=0

( jh)i

i!
y(i)

n +h3

[
1∑

j=0
σ j(t) fn+ j +σs(t) fn+s

]
, s = 1

4

(
1
4

)
3
4

, (16)

where
σ0(t)= 1

2520 (128x7 −560x6 +980x5 −875x4 +420x3)

σ 1
4
(t)=− 2

315 (32x7 −126x6 +182x5 −105x4)

σ 1
2
(t)= 1

210 (64x7 −224x6 +266x5 −105x4)

σ 3
4
(t)=− 2

315 (32x7 −98x6 +98x5 −35x4)

σ1(t)= 1
2520 (128x7 −336x6 +308x5 −105x4)


and t is as defined in equation (15).

Evaluating (16) at t = 1
4

(1
4

)
1, gives a discrete one-step computational method of the form (1),

where

Y (i)
m =

[
y(i)

n+ 1
4

y(i)
n+ 1

2
y(i)

n+ 3
4

y(i)
n+1

]T
, F(Ym)=

[
fn+ 1

4
fn+ 1

2
fn+ 3

4
fn+1

]T
,
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y(i)
n =

[
y(i)

n− 1
4

y(i)
n− 1

2
y(i)

n− 3
4

y(i)
n

]T

and A(0) is a 4×4 identity matrix.
When i = 0

e0 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , e1 =


0 0 0 1

4

0 0 0 1
2

0 0 0 3
4

0 0 0 1

 , e2 =


0 0 0 1

32
0 0 0 1

8
0 0 0 9

32
0 0 0 1

2

 ,

d0 =


0 0 0 113

71680

0 0 0 331
40320

0 0 0 1431
71680

0 0 0 31
840

 , b0 =



107
64512

−103
107520

43
107520

−47
645120

83
5040

−1
168

13
5040

−19
40320

1863
35840

−243
35840

45
7168

−81
71680

34
315

1
210

2
105

−1
504

 .

When i = 1

e1 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , e2 =


0 0 0 1

4
0 0 0 1

2
0 0 0 3

4
0 0 0 1

 , d1 =


0 0 0 367

23040
0 0 0 53

1440
0 0 0 147

2560
0 0 0 7

90

 ,

b1 =



3
128

−47
3840

29
5760

−7
7680

1
10

−1
48

1
90

−1
480

117
640

27
1280

3
128

−9
2560

4
15

1
15

4
45 0

 .

When i = 2

e2 =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

 , d2 =


0 0 0 251

2880

0 0 0 29
360

0 0 0 27
320

0 0 0 7
90

 , b2 =



323
1440

−11
120

53
1440

−19
2880

31
90

1
15

1
90

−1
360

51
160

9
40

21
160

−3
320

16
45

2
15

16
45

7
90

 .

4. Analysis of Basic Properties of the Computational Method
4.1 Order of the Computational Method
Let the linear operator ` {y(t) : h} be defined on equation (10) when i = 0 such that

` {y(t) : h}= A(0)Y (i)
m −

1∑
i=0

( jh)(i)

i!
e i y(i)

n +h(3−i) [di f (yn)+biF(Ym)] (17)

From equation (17), expanding Ym and F(Ym) in Taylor’s series and comparing the coefficients
of h gives

` {y(t) : h}= C0 y(t)+C1 y′(t)+ ...+Cphp yp(t)+Cp+1hp+1 yp+1(t)+Cp+2hp+2 yp+2(t)+ ...
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Definition 4.1 ([12]). The linear operator ` and the associated computational method (10) are
said to be of order p if C0 = C1 = . . . = Cp = Cp+1 = Cp+2 = 0, Cp+3 6= 0. Cp+3 is called the error
constant and implies that the truncation error is given by Tn+k = Cp+3hp+3 yp+3(t)+O(hp+4)

∞∑
j=0

( 1
4 h

) j

j! − yn − 1
4 hy′n − 1

32 h2 y′′n − 113
71680 h3 y′′′n −

∞∑
j=0

h j+3

j! y j+3
n

 107
64512

(1
4

) j − 103
107520

(1
2

) j

+ 43
107520

(3
4

) j − 47
645120 (1) j


∞∑
j=

( 1
2 h

) j

j! − yn − 1
2 hy′n − 1

8 h2 y′′n − 331
40320 h3 y′′′n −

∞∑
j=0

h j+3

j! y j+3
n

 83
5040

(1
4

) j − 1
168

(1
2

) j

+ 13
5040

(3
4

) j − 19
40320 (1) j


∞∑
j=0

( 3
4 h

) j

j! − yn − 3
4 hy′n − 9

32 h2 y′′n − 1431
71680 h3 y′′′n −

∞∑
j=0

h j+3

j! y j+3
n

 1863
35840

(1
4

) j − 243
35840

(1
2

) j

+ 45
7168

(3
4

) j − 81
71680 (1) j


∞∑
j=0

(h) j

j! − yn −hy′n − 1
2 h2 y′′n − 31

840 h3 y′′′n −
∞∑
j=0

h j+3

j! y j+3
n

 34
315

(1
4

) j + 1
210

(1
2

) j

+ 2
105

(3
4

) j − 1
504 (1) j





= 0.

Comparing the coefficients of h, the order p of the computational method and error constants
are given respectively by p = [5 5 5 5]T and[
5.260×10−8 3.3908×10−7 8.2765×10−7 1.5501×10−6]T .

4.2 Consistency of the Computational Method
A computational method is said to be consistent if its order p ≥ 1. Our method is thus consistent
since it is of uniform order 5. Note that consistency controls the magnitude of the local truncation
error committed at each stage of the computation [8].

4.3 Zero-stability of the Computational Method
Definition 4.2 ([8]). The computational method is said to be zero-stable, if the roots zs,
s = 1,2, . . . ,k of the first characteristic polynomial ρ(z) defined by ρ(z)= det(zA(0)−E) satisfies
|zs| ≤ 1 and every root satisfying |zs| = 1 have multiplicity not exceeding the order of the
differential equation. The first characteristic polynomial is given by,

ρ(z)=

∣∣∣∣∣∣∣∣∣z


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1


∣∣∣∣∣∣∣∣∣=

∣∣∣∣∣∣∣∣∣


z 0 0 −1
0 z 0 −1
0 0 z −1
0 0 0 z−1


∣∣∣∣∣∣∣∣∣= z3(z−1)

Thus, solving for zin

z3(z−1)= 0 (18)

gives z = 0,0,0,1. Hence, the computational method (10) is said to be zero-stable.

4.4 Convergence of the Computational Method
Theorem 4.1 ([19]). The necessary and sufficient conditions that a continuous LMM be
convergent are that it be consistent and zero-stable.
Thus, the computational method formulated is convergent.
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4.5 Stability Region of the Computational Method
Definition 4.3 (Yan, 2011). Region of absolute stability is a region in the complex z plane,
where z =λh for which the method is absolutely stable. It is defined as those values of zsuch
that the numerical solutions of y′′′ =−λy satisfy yj → 0 as j →∞ for any initial condition.

To determine the regions of absolute stability of the block integrators, a method that requires
neither the computation of roots of a polynomial nor solving of simultaneous inequalities was
adopted. This method according to [12] is called the Boundary Locus Method. Applying this
method we obtain the stability polynomial below

h(w)= h12
(

1
4404019200

w4 − 41
44040192000

w4
)
−h9

(
233

77414400
w3 − 47

1238630400
w4

)
+h6

(
23

6881280
w4 − 66841

41287680
w3

)
− 13

60
h3w3 +w4 − 5

2
w3 (19)

On the application of the stability polynomial in equation (19), we obtain the region of
absolute stability in the figure below.
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Figure 1. Region of absolute stability of the computational method

The stability region obtained in Figure 1 is A-stable, since it contains the whole of the
left-half plane of the figure. Note that the unstable region is the exterior of the curve (when the
curve is on the negative plane) while the stability region is the interior of the curve.

5. Implementation of the Computational Method

It is important to state that the one-step computational method formulated can be used to
implement higher differential equations of the form (1) without the need to reduce it to an

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 615–626, 2018



On the Oscillation Criteria and Computation of Third Order Oscillatory Differential Equation: J. Sunday 623

equivalent system of first order. For the computational method formulated which is of uniform
order p = 5, we use Taylor series expansion to calculate yn+1 and its first, second and third
derivatives up to order p = 5.

yn+ j ≡ y(tn + jh)∼= y(tn)+ jhy′(tn)+ ( jh)2

2!
y′′(tn)+ ( jh)3

3!
fn + ( jh)4

4!
f ′n +

( jh)5

5!
f ′′n ,

y′n+ j ≡ y′(tn + jh)∼= y′(tn)+ jhy′′(tn)+ ( jh)2

2!
fn + ( jh)3

3!
f ′n +

( jh)4

4!
f ′′n + ( jh)5

5!
f ′′′n ,

y′′n+ j ≡ y′′(tn + jh)∼= y′′(tn)+ jhfn + ( jh)2

2!
f ′n +

( jh)3

3!
f ′′n + ( jh)4

4!
f ′′′n + ( jh)5

5!
f iv
n ,

y′′′n+ j ≡ y′′′(tn + jh)∼= fn + jhf ′n +
( jh)2

2!
f ′′n + ( jh)3

3!
f ′′′n + ( jh)4

4!
f iv
n + ( jh)5

5!
f v
n .

We proceed with the implementation by substituting the known values of tn and yn into the
differential equations. Then, the differential equation is differentiated to obtain the expression
for higher derivatives via partial differentiation as follows:

y′′′ = f (t, y, y′, y′′)= f j ,

yiv = f t + y′ f y + y′′ f y′ + f f y′′ =
(
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ f

∂

∂y′′

)
= D f j

yv = f tt +
(
y′

)2 f yy +
(
y′′

)2 f y′ y′ + f 2 f y′′ y′′ +2y′ f f ty +2y′′ f ty′

+2y′y′′ f yy′ +2y′ f f yy′′ +2y′′ f f y′ y′′ +D f j
(
f y′

)+ f j
(
y′′+ f y′

)
= D2 f j +

(
f y′′

)
D f j + f j

(
y′′+ f y′

)
j

...

DP f j

where p is the order of the computational method. Also, note that

D =
(
∂

∂t
+ y′

∂

∂y
+ y′′

∂

∂y′
+ f

∂

∂y′′

)
and D2 = D(D) .

6. Results
6.1 Numerical Experiments
In this section, we shall approximate some modeled third order oscillatory problems of the
form (1) using the computational method formulated.

Problem 6.1. Consider the third order oscillatory differential equation,

y′′′(t)=−y′(t), y(0)= 0, y′(0)= 1, y′′(0)= 2 (20)

with the exact solution is given by

y(t)= 2(1−cos t)+sin t . (21)

Source: [2]
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Table 1. Showing the result for Problem 6.1

t Exact solution Computed solution Error Error in [2] Eval t/sec

0.1000 0.109825086090777 0.109825086090776 3.7470e-016 1.6613 e-12 0.1421
0.2000 0.238536175112578 0.238536175112577 8.3267e-016 7.5411 e-12 0.1861
0.3000 0.384847228410128 0.384847228410126 1.3878e-015 1.3843 e-09 0.3092
0.4000 0.547296354302881 0.547296354302879 1.4433e-015 4.5006 e-09 0.8164
0.5000 0.724260414823458 0.724260414823457 1.5543e-015 1.0520 e-08 1.2584
0.6000 0.913971243575679 0.913971243575677 1.9984e-015 1.9715 e-08 1.4651
0.7000 1.114533312668715 1.114533312668713 2.8866e-015 3.2968 e-08 1.6622
0.8000 1.323942672205193 1.323942672205189 4.4409e-015 5.0419 e-08 1.8853
0.9000 1.540106973086156 1.540106973086152 3.5527e-015 7.2608 e-08 1.9926
1.0000 1.760866373071619 1.760866373071613 5.3291e-015 9.9511 e-08 2.1447

Problem 6.2. Consider the third order oscillatory differential equation,

y ′′′(t)= y′′(t)− y′(t)+ y(t), y(0)= 1, y′(0)= 0, y′′(0)=−1, h = 0.01 (22)

with the exact solution is given by,

y(t)= cos t (23)

Source: [18]

Table 2. Showing the result for Problem 6.2

t Exact Solution Computed Solution Error Error in [18] Eval t/sec

0.0100 0.999950000416665 0.999950000416665 1.1102e-016 0.0000 0.0290
0.0200 0.999800006666578 0.999800006666579 1.3323e-015 0.0000 0.0334
0.0300 0.999550033748988 0.999550033748997 9.6589e-015 0.0000 0.0379
0.0400 0.999200106660978 0.999200106661011 3.2974e-014 1.0e-10 0.0424
0.0500 0.998750260394966 0.998750260395049 8.2379e-014 1.0e-10 0.0469

Problem 6.3. Consider the third order oscillatory differential equation,

y′′′(t)= 3sin t, y(0)= 1, y′(0)= 0, y′′(0)=−2 (24)

with the exact solution is given by,

y(t)= 3cos t+ t2

2
−2 (25)

Source: [2]

Table 3. Showing the result for Problem 6.3

t Exact solution Computed Solution Error Error in [2] Eval t/sec

0.1000 0.990012495834077 0.990012495834077 3.3307e-016 2.5934 e-12 0.0093
0.2000 0.960199733523725 0.960199733523725 3.3307e-016 1.1857 e-11 0.0137
0.3000 0.911009467376818 0.911009467376818 3.3307e-016 2.6224 e-11 0.0181
0.4000 0.843182982008655 0.843182982008655 1.1102e-016 4.7034 e-11 0.0233
0.5000 0.757747685671118 0.757747685671118 1.1102e-016 7.2700 e-11 0.0278
0.6000 0.656006844729034 0.656006844729035 4.4409e-016 1.0437 e-10 0.0322
0.7000 0.539526561853465 0.539526561853465 5.5511e-016 1.4049 e-10 0.0366
0.8000 0.410120128041496 0.410120128041496 5.5511e-016 1.8197 e-10 0.0413
0.9000 0.269829904811993 0.269829904811993 7.2164e-016 2.2736 e-10 0.0457
1.0000 0.120906917604418 0.120906917604419 1.0547e-015 2.7729 e-10 0.0501
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Problem 6.4. Consider the third order oscillatory differential equation,

y′′′(t)=−4y′(t)+ t, y(0)= y′(0)= 0, y′′(0)= 1 (26)

with the exact solution is given by,

y(t)=
(

3
16

)
(1−cos2t)+

(
1
8

)
t2 (27)

Source: [15]

Table 4. Showing the result for Problem 6.4

t Exact Solution Computed Solution Error Error in [15] Eval t/sec

0.1000 0.004987516654767 0.004987516653935 8.3209e-013 9.61000e-10 0.0293
0.2000 0.019801063624459 0.019801063620984 3.4752e-012 6.50000 e-09 0.0341
0.3000 0.043999572204435 0.043999572196618 7.8178e-012 1.59700 e-08 0.0387
0.4000 0.076867491997407 0.076867491983726 1.3681e-011 1.66400 e-08 0.0433
0.5000 0.117443317649724 0.117443317628899 2.0825e-011 2.03000 e-08 0.1052
0.6000 0.164557921035624 0.164557921006662 2.8962e-011 2.66000 e-08 0.1723
0.7000 0.216881160706205 0.216881160668441 3.7764e-011 2.67000 e-08 0.2364
0.8000 0.272974910431492 0.272974910384613 4.6879e-011 2.71000 e-08 0.2984
0.9000 0.331350392754954 0.331350392699013 5.5941e-011 2.77000 e-08 0.3442
1.0000 0.390527531852590 0.390527531787998 6.4592e-011 2.72000 e-08 0.3488

6.2 Discussion of Result
The results obtained in Tables 1-4 clearly show that the computational method developed
is computationally reliable and efficient. This is because the computed solution matches the
exact solution. In fact, the method obviously performed better than the ones with which we
compared our results. The method is also efficient because from the tables, the evaluation
times per seconds are very small. This shows that the method generates results very fast (in
microseconds).

7. Conclusion
In this paper, the oscillation criteria of third order oscillatory problems have been studied.
A highly efficient computational method has also been formulated for the approximation of
third order oscillatory problems of the form (1). The basic properties of the method were also
analyzed. The stability region of the method was found to A-stable, showing that it can effectively
approximate oscillatory problems of third order.
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