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Abstract. We are interested in one dimensional nonlinear stochastic partial differential equation: the
generalized Burgers equation with homogeneous Dirichlet boundary conditions, perturbed by additive
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1. Introduction
It is well known that the Burgers equation is not a good model for turbulence. It does not display
any chaos; even when a force is added to the right hand side all solutions converge to a unique
stationary solution as time goes to infinity.

However the situation is totally different when the force is a random one. Several authors
have, indeed, suggested to use the stochastic Burgers equation as a simple model for turbulence
([1], [2], [3], [9]). The equation has also been proposed in ([10]) to study the dynamics of
interfaces.
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Here we consider the generalized Burgers equation with a random force which is a space-time
white noise

∂u(t, x)
∂t

= ρ∂
2u(t, x)
∂x2 −∂x f (u(t, x))+ ∂2W̃

∂t∂x
, (1)

where ρ is the viscosity coefficient and, W̃(t, x), t ≥ 0, x ∈ R is a zero mean Gaussian process
whose covariance function is given by

E
[
W̃(t, x)W̃(s, y)

]= (t∧ s)(x∧ y), t, s ≥ 0, x, y ∈R.

Alternatively, we can consider a cylindrical Wiener process W by setting

W(t)= ∂W̃
∂x

=
∞∑

h=1
βheh, (2)

where {eh} is an orthonormal basis of L2(0,2π) and {βh} is a sequence of mutually independent
real Brownian motions in a fixed probability space (Ω,F,P) adapted to a filtration {Ft}t≥0. The
series (2) defining W does not converge in L2(0,2π) but it is convergent in any Hilbert space U
such that the embedding

L2(0,2π)⊂U

is Hilbert-Schmidt ([5]).
In the following we shall write (1) as follows:

du (t, x)=
(
ρ
∂2u(t, x)
∂x2 −∂x f (u(t, x))

)
dt+dW , x ∈ [0,2π], t > 0, (3)

where W is defined by (2). We assume that f :R→R is a locally Lipschitz continuous function.
Equation (3) is supplemented with Dirichlet boundary conditions

u (0, t)= u (2π, t)= 0, (4)

and the initial condition

u (x,0)= u0(x), x ∈ [0,2π]. (5)

Our aim in this paper is to prove problem (3) with boundary and initial conditions (4), (5) has a
unique global solution.

The next section, we set the notations, introduce the stochastic convolution and prove local
existence in time.

2. Local Existence in Time
Define the unbounded self-adjoint operator A on L2 (0,2π) by

Au = ρ∂
2u
∂x2 ,

for u on the domain

D(A)= {u ∈ H2(0,2π) : u(0)= u(2π)= 0}.

Denote etA , t ≥ 0 the semigroup on L2(0,2π) generated by A. It is well known that etA , t ≥ 0, has
a natural extension, that we still denote by etA , t ≥ 0, as a contraction semigroup on L2(0,2π)
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for any p ≥ 1. Finally, we denote by {ek} the complete orthonormal system on L2(0,2π) which
diagonalizes A and {λk} the corresponding eigenvalues. We have

ek(x)=
√

2
π

sinkπx, k = 1,2, . . .

and

λk =−π2k2, k = 1,2, . . . .

Now, we rewrite (3), (4), (5) as the abstract differential stochastic equation{
du = (Au−∂x f (u))dt+dW ,
u (0)= u0 .

(6)

Recall that the solution to the linear problem{
du = Au dt+dW ,
u(0)= u0

(7)

is unique and given by the so-called stochastic convolution

WA(t)=
∫ t

0
e(t−s)AdW(s). (8)

It can be shown that WA is a Gaussian process and it is mean square continuous with values in
L2(0,2π). Moreover, WA has a version which is, a.s. for ω ∈Ω, α-Hölder continuous with respect
to (t, x) for any α ∈ [0,1/4[ ([5]).

We set

v(t)= u(t)−WA(t), t ≥ 0,

then u satisfies (6) if and only if v is a solution of{
dv
dt = Av−∂x f (v+WA),
v(0)= u0 .

(9)

From now we will study equation (9) a.s. ω ∈Ω and consider for the moment that WA is an
α-Hölder continuous function with respect to (t, x) for any α ∈ [0,1/4[. We will return to the
stochastic point of view (and to equation (6)) at the end of § 3.

Let us write (9) as

v(t)= etAu0 −
∫ t

0
e(t−s)A∂x f (v+WA)ds; (10)

then if v satisfies (10) we say that it is a mild solution of (9).
We are going to solve equation (10) by a fixed point argument in the space C([0,T∗];Lp(0,2π))

for p > 1 and for some T∗ > 0. We set

Σp(m,T∗)= {v ∈ C([0,T∗];Lp(0,2π)) : |v(t)|Lp(0,2π) ≤ m, for all t ∈ [0,T∗]},

and consider an initial datum u0 F0-measurable and belonging to Lp(0,2π), ω ∈Ω a.s. We will
see, in the proof of the Lemma 2.1 below that if z(t) is, a bounded function from [0,T] into
Lp(0,2π), then, for t > 0, the function etA ∂

∂x f (z) is also in Lp(0,2π). Hence the integral in (10) is
convergent in Lp(0,2π) a.s. Thus (10) has a meaning as an equality in Lp(0,2π).
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Lemma 2.1. For any p ≥ 2 and m > |u0|Lp(0,2π), there exists a stopping time T∗ > 0 such that
(10) has a unique solution in Σp(m,T∗).

Proof. Take any v in Σp(m,T∗) and define z =Gv by

z(t)= etAu0 −
∫ t

0
e(t−s)A∂x f (v+WA)ds,

where G : C([0,T∗];Lp(0,2π))→ C([0,T∗];Lp(0,2π)) is a non-linear operator. Then

|z(t)|Lp(0,2π) ≤ |etAu0|Lp(0,2π) +
∫ t

0
|e(t−s)A∂x f (v+WA)|Lp(0,2π)ds.

As we noticed before, etA , t ≥ 0 is a contraction semigroup on Lp(0,2π) which has a regularizing
effect and, for any s1 ≤ s2 in R, and r ≥ 1, etA maps W s1,r(0,2π) into W s2,r(0,2π), for all t > 0.
Moreover, the following estimate holds

|etA z|W s2,r(0,2π) ≤ C1
(
t

s1−s2
2 +1

)|z|W s1,r(0,2π) (11)

for all z ∈W s1,r(0,2π). The constant C1 depends only on s1, s2 and r, see for instance ([11]).
Using the Sobolev embedding theorem we have

|e(t−s)A∂x f (v+WA)|Lp(0,2π) ≤ C2|e(t−s)A∂x f (v+WA)|
W

1
p , p

2 (0,2π)

and, thanks to (11) with s1 =−1, s2 = 1/p, r = p/2

|e(t−s)A∂x f (v+WA)|Lp(0,2π) ≤ C1C2
(
(t− s)−

1
2− 1

2p +1
)|∂x f (v+WA)|

W−1, p
2 (0,2π)

≤ C1C2
(
(t− s)−

1
2− 1

2p +1
)| f (v+WA)|

L
p
2 (0,2π)

.

Therefore,

|z(t)|Lp(0,2π) ≤|u0|Lp(0,2π) +C1C2

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)| f (v+WA) |

L
p
2 (0,2π)

ds

≤|u0|Lp(0,2π) +C1C2 Lip1

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)(

1+|v+WA|L p
2 (0,2π)

)
ds

≤|u0|Lp(0,2π) +C1C2 Lip1

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)(

1+|v|
L

p
2 (0,2π)

+|WA|L p
2 (0,2π)

)
ds

≤|u0|Lp(0,2π) +C1C2 Lip1
(
1+ (2π)

1
p m+µp

)∫ t

0

(
(t− s)−

1
2− 1

2p +1
)
ds

≤|u0|Lp(0,2π) +C1C2 Lip1
(
1+ (2π)

1
p m+µp

)( 2p
p−1

t
1
2− 1

2p + t
)
,

where Lip1 is the Lipschitz constant of f which depend on m+µp , and

µp = sup
t∈[0,T]

|WA(t)|
L

p
2 (0,2π)

.

Hence |z(t)|Lp(0,2π) ≤ m for all t ∈ [0,T∗] provided

|u0|Lp(0,2π) +C1C2 Lip1
(
1+ (2π)

1
p m+µp

)( 2p
p−1

(
T∗) 1

2− 1
2p +T∗

)
≤ m . (12)

It is clear that for any m > |u0|Lp(0,2π) there exists a T∗ satisfying (12). Now consider
v1,v2 ∈Σp(m,T∗) and set zi =Gvi , i = 1,2 and z = z1 − z2.
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Then

z(t)=
∫ t

0
e(t−s)A ∂

∂x
[ f (v1 +WA)− f (v2 +WA)]ds,

and we derive as above

|z(t)|Lp(0,2π) ≤ C1C2

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)| f (v1 +WA)− f (v2 +WA) |

L
p
2 (0,2π)

ds.

According to the hypothesis on f , we have

| f (v1 +WA)− f (v2 +WA) |
L

p
2 (0,2π)

≤Lip2 |v1 −v2|L p
2 (0,2π)

≤Lip2(2π)
1
p |v1 −v2|Lp(0,2π)

= C3|v1 −v2|Lp(0,2π) ,

where Lip2 is the Lipschitz constant of f which depend on m+µp , and C3 =Lip2(2π)
1
p , hence

|z(t)|Lp(0, 2π) ≤ C1C2C3

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)|v1 −v2|Lp(0, 2π)ds

≤ C max
0≤s≤t

|v1 (s)−v2 (s) |Lp(0, 2π)

∫ t

0

(
(t− s)−

1
2− 1

2p +1
)
ds

≤ C
(

2p
p−1

(
T∗) 1

2− 1
2p +T∗

)
|v1 −v2|C([0, T∗]; Lp(0, 2π))

for all t ∈ [0,T∗] provided

|Gv1 −Gv2|C([0, T∗]; Lp(0, 2π)) ≤ C
(

2p
p−1

(
T∗) 1

2− 1
2p +T∗

)
|v1 −v2|C([0, T∗]; Lp(0, 2π)) .

We take T∗ such that

C
(

2p
p−1

(
T∗) 1

2− 1
2p +T∗

)
< 1

and (12) holds so that G is a strict contraction on Σp (m,T∗).

Remark 2.1 ([4]). As mentioned before all the previous results are valid a.s. for ω ∈ Ω; in
particular µp and T∗ depend on ω. In the next section we will show that T∗ = T a.s. for ω ∈Ω
and hence remove the dependence on ω for the time interval on which the solution exists.

3. Global Existence
We are still considering equation (10) as a deterministic one, working a.s. for ω ∈Ω.

Theorem 3.1 (Global existence). Let u0 be given which is F0-measurable and such that for some
p ≥ 2, u0 ∈ Lp(0,2π) a.s. If ρ ≥ Lip1c

2 then there exists a unique mild solution of equation (6),
which belongs a.s. to C([0,T];Lp(0,2π)).

In the following lemma, we derive a priori estimate which yields global existence.

Lemma 3.1. If v ∈ C([0,T];Lp(0,2π)) satisfies (10) and ρ ≥ Lip1c
2 , then

|v(t)|Lp(0,2π) ≤ etLip1 c (p−1)
2 µ2∞ |u0|Lp(0,2π) ,

where c = (2π)
2

p(p−2) and µ∞ = sup
t∈[0,T]

|WA(t)|L∞(0,2π).
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Proof. Let {un
0 } be a sequence in C∞(0,2π) such that

un
0 → u0, in Lp(0,2π),

and let {Wn} be a sequence of regular processes such that

Wn
A(t)=

∫ t

0
e(t−s)AdWn (s)→WA(t)

in C ([0,T]× [0,2π]) a.s. for ω ∈Ω.
Let vn be the solution of

vn(t)= etAun
0 −

∫ t

0
e(t−s)A∂x f

(
vn +Wn

A
)
ds

given by Lemma 2.1. It is easy to see that vn does exist on an interval of time [0,Tn] such that
Tn → T∗ a.s. and that vn converges to v in C ([0,T∗] ;Lp(0,2π)) a.s. Moreover, vn is regular a.s.
and satisfies

∂vn

∂t
−ρ∂

2vn

∂x2 +∂x f (vn +Wn
A)= 0. (13)

Multiplying (13) by |vn|p−2vn and integrating over [0,2π], we find

1
p
∂

∂t
|vn|pLp(0,2π) +ρ (p−1)

∫ 2π

0
|vn|p−2

(
∂vn

∂x

)2
dx+

∫ 2π

0

∂

∂x
f
(
vn +Wn

A
) |vn|p−2vndx = 0. (14)

We integrate by parts the last integral∫ 2π

0

∂

∂x
f
(
vn +Wn

A
) |vn|p−2vndx =− (p−1)

∫ 2π

0
f
(
vn +Wn

A
) |vn|p−2 ∂

∂x
vndx ,

then ∣∣∣∣∫ 2π

0

∂

∂x
f
(
vn +Wn

A
) |vn|p−2vndx

∣∣∣∣ = (p−1)
∣∣∣∣∫ 2π

0
f
(
vn +Wn

A
) |vn|p−2 ∂

∂x
vndx

∣∣∣∣
≤ (p−1)

∫ 2π

0
| f (

vn +Wn
A
) |vn|p−2 ∂

∂x
vn|dx

≤ (p−1)
∫ 2π

0
Lip1

(
1+|vn +Wn

A|
) |vn|p−2 ∂

∂x
vndx

≤ (p−1)
∫ 2π

0
Lip1 |vn|p−2 ∂

∂x
vndx

+ (p−1)
∫ 2π

0
Lip1 |vn|p−1 ∂

∂x
vndx

+ (p−1)
∫ 2π

0
Lip1 |Wn

A||vn|p−2 ∂

∂x
vndx .

The first term is zero, indeed∫ 2π

0
|vn|p−2 ∂

∂x
vndx =−

∫ 2π

0
(p−2)|vn|p−2 ∂

∂x
vndx .

Hence

(p−1)
∫ 2π

0
|vn|p−2 ∂

∂x
vndx = 0 .

In the same way, we can prove that the second term is also zero.
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According to the Hölder’s and Cauchy’s inequalities we bound the third term as follows

Lip1 (p−1)
∫ 2π

0
|Wn

A||vn|p−2 ∂

∂x
vndx

≤Lip1 (p−1) |Wn
A|L∞(0,2π)|vn|

p−2
2

Lp−2(0,2π)

(∫ 2π

0
|vn|p−2

(
∂

∂x
vn

)2
dx

) 1
2

≤Lip1 c (p−1)µn,∞|vn|
p−2

2
Lp(0,2π)

(∫ 2π

0
|vn|p−2

(
∂

∂x
vn

)2
dx

) 1
2

≤Lip1 c
(p−1)

2
µ2

n,∞|vn|p−2
Lp(0,2π) +Lip1 c

(p−1)
2

∫ 2π

0
|vn|p−2

(
∂

∂x
vn

)2
dx ,

where c = (2π)
2

p(p−2) and µn,∞ = sup
t∈[0,T]

|Wn
A (t) |L∞(0,2π) for a.s. ω ∈Ω.

Going back to (14) we obtain

1
p
∂

∂t
|vn|pLp(0,2π) +ρ (p−1)

∫ 2π

0
|vn|p−2

(
∂vn

∂x

)2
dx

≤Lip1 c
(p−1)

2
µ2

n,∞|vn|p−2
Lp(0,2π) +Lip1 c

(p−1)
2

∫ 2π

0
|vn|p−2

(
∂vn

∂x

)2
dx .

It follows
1
p
∂

∂t
|vn|pLp(0,2π) + (p−1)

(
ρ− Lip1 c

2

)∫ 2π

0
|vn|p−2

(
∂vn

∂x

)2
dx ≤Lip1 c

(p−1)
2

µ2
n,∞|vn|p−2

Lp(0,2π) .

If we take ρ and Lip1 such that

ρ ≥ Lip1c
2

.

We obtain
∂

∂t
|vn|pLp(0,2π) ≤Lip1 c

p (p−1)
2

µ2
n,∞|vn|pLp(0,2π)

and, according to Gronwall’s lemma

|vn|pLp(0,2π) ≤ etLip1 c p(p−1)
2 µ2

n,∞ |un
0 |pLp(0,2π).

Taking the limit as n →∞, we see that a.s.

|v|pLp(0,2π) ≤ etLip1 c p(p−1)
2 µ2∞ |u0|pLp(0,2π).

It follows

|v|Lp(0,2π) ≤ etLip1 c (p−1)
2 µ2∞ |u0|Lp(0,2π)

and the assertion of the lemma follows.

Proof of Theorem 3.1. It is easily deduced from Lemma 2.1 and Lemma 3.1.
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