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1. Introduction
The quaternion numbers have been introduced by William Rowan Hamilton in the mid
nineteenth century. Quaternions are four-dimensional hyper-complex numbers.

A quaternion is defined by

p = p0 + p1e1 + p2e2 + p3e3,

where p0, p1, p2 and p3 are real numbers, and the units e1, e2, e3 satisfy the rules

e2
1 = e2

2 = e2
3 = e1e2e3 =−1,

e1e2 = e3 =−e2e1, e2e3 = e1 =−e3e2, e3e1 = e2 =−e1e3. (1)

For more details on quaternions, one can see, for example [5,17].
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The split quaternions, in other words coquaternions, have been introduced by James Cockle
in 1849. Split quaternions form a four-dimensional non-commutative associative algebra over
the real numbers with basis {1, e1, e2, e3}.

A split quaternion q is of the form

q = q0 + q1e1 + q2e2 + q3e3 = (q0, q1, q2, q3),

where q0, q1, q2 and q3 are real numbers, and the units e1, e2, e3 satisfy the rules

e2
1 =−1, e2

2 = e2
3 = e1e2e3 = 1,

e1e2 = e3 =−e2e1, e2e3 =−e1 =−e3e2, e3e1 = e2 =−e1e3. (2)

The conjugate of split quaternion q denoted by q is

q = q0 + q1e1 − q2e2 − q3e3,

and the norm of q is

N(q)= qq = q2
0 + q2

1 − q2
2 − q2

3.

The Fibonacci sequence is defined recursively by the relation Fn = Fn−1 +Fn−2 with initial
conditions F0 = 0 and F1 = 1. Similarly, the Lucas sequence is defined as Ln = Ln−1 +Ln−2,
where L0 = 2 and L1 = 1.

The Jacobsthal sequence is defined by the recurrence relation Jn = Jn−1 +2Jn−2 with initial
conditions J0 = 0 and J1 = 1. Also, the Jacobsthal-Lucas sequence is defined recursively by the
relation jn = jn−1 +2 jn−2, where j0 = 2 and j1 = 1.

The generating functions of the Jacobsthal and Jacobsthal-Lucas sequences are given by

G(t)= t
1− t−2t2

and

g(t)= 2− t
1− t−2t2 ,

respectively. Moreover, the Binet’s formulas for these sequences are defined as

Jn = 2n − (−1)n

3
(3)

and

jn = 2n + (−1)n, (4)

respectively. There have been many studies on the Jacobsthal and Jacobsthal-Lucas sequences
(see, for example [3,7,9,16]).

Horadam [6] defined the Fibonacci and Lucas quaternions as

Qn = Fn +Fn+1e1 +Fn+2e2 +Fn+3e3

and

Kn = Ln +Ln+1e1 +Ln+2e2 +Ln+3e3,

respectively, where Fn is the nth Fibonacci number, Ln is the nth Lucas number, and e1, e2, e3

satisfy the rules (1).
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Iyer [8] investigated the relations between the Fibonacci and Lucas quaternions. Moreover,
Halici [4] obtained some properties of the Fibonacci quaternions. In [11], Ramirez defined
k-Fibonacci and k-Lucas quaternions. Furthermore, Tan et al. [13,14] introduced the bi-periodic
Fibonacci and Lucas quaternions.

Akyigit et al. [1] defined the split Fibonacci and Lucas quaternions as

Qn = Fn +Fn+1e1 +Fn+2e2 +Fn+3e3

and

Tn = Ln +Ln+1e1 +Ln+2e2 +Ln+3e3,

respectively, where Fn is the nth Fibonacci number, Ln is the nth Lucas number, and e1, e2, e3

satisfy the rules (2).

Polatli et al. [10] studied the split k-Fibonacci and k-Lucas quaternions, and in [15], Tokeser
et al. introduced the split Pell and Pell-Lucas quaternions.

The Jacobsthal and Jacobsthal-Lucas quaternions are defined by Szynal-Liana and
Włoch [12] as

JQn = Jn + Jn+1e1 + Jn+2e2 + Jn+3e3

and

JLQn = jn + jn+1e1 + jn+2e2 + jn+3e3,

respectively, where Jn is the nth Jacobsthal number, jn is the nth Jacobsthal-Lucas number,
and e1, e2, e3 satisfy the rules (1).

Aydin and Yuce [2] investigated some properties of the Jacobsthal and Jacobsthal-Lucas
quaternions.

The main objective of this paper is to introduce split Jacobsthal quaternions and split
Jacobsthal-Lucas quaternions. We also aim to obtain some properties of these quaternions
including generating functions, Binet’s formulas, determinantal representations, matrix
representations, Cassini’s identities, Catalan’s identities, and d’Ocagne’s identities.

2. Split Jacobsthal and Split Jacobsthal-Lucas Quaternions

The nth split Jacobsthal quaternion and nth split Jacobsthal-Lucas quaternion are defined, for
n ≥ 0, by

SJQn = Jn + Jn+1e1 + Jn+2e2 + Jn+3e3

and

SJLQn = jn + jn+1e1 + jn+2e2 + jn+3e3,

respectively, where Jn is the nth Jacobsthal number, jn is the nth Jacobsthal-Lucas number,
and e1, e2, e3 are split quaternionic units which satisfy the rules (2).
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It is easy to see that

SJQn = SJQn−1 +2SJQn−2 (5)

and

SJLQn = SJLQn−1 +2SJLQn−2. (6)

The generating functions for the split Jacobsthal and Jacobsthal-Lucas quaternions are
given in the following theorem.

Theorem 1. The generating functions of the split Jacobsthal and split Jacobsthal-Lucas
quaternions are

J(t)= SJQ0(1− t)+SJQ1t
1− t−2t2 (7)

and

JL(t)= SJLQ0(1− t)+SJLQ1t
1− t−2t2 , (8)

respectively.

Proof. Let us write

J(t)=
∞∑

n=0
SJQntn = SJQ0 +SJQ1t+SJQ2t2 +SJQ3t3 + . . .+SJQntn + . . . .

Then, we have

tJ(t)= SJQ0t+SJQ1t2 +SJQ2t3 + . . .+SJQn−1tn + . . .

and

2t2J(t)= 2SJQ0t2 +2SJQ1t3 + . . .+2SJQn−2tn + . . . .

Thus, we obtain

(1− t−2t2)J(t)= SJQ0 + (SJQ1 −SJQ0)t+
∞∑

n=2
(SJQn −SJQn−1 −2SJQn−2)tn

= SJQ0 + (SJQ1 −SJQ0)t

which completes the proof of eq. (7).

Eq. (8) can be proved similarly.

The following theorem gives Binet’s formulas for the split Jacobsthal and Jacobsthal-Lucas
quaternions.

Theorem 2. The nth term of the split Jacobsthal quaternion and the nth term of the split
Jacobsthal-Lucas quaternion are

SJQn = α∗2n −β∗(−1)n

3
(9)

and

SJLQn =α∗2n +β∗(−1)n, (10)

respectively, where α∗ = (1,2,4,8) and β∗ = (1,−1,1,−1).
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Proof. The characteristic equation of the recurrence relations (5) and (6) is t2 − t−2 = 0, and
the roots of this equation are 2 and −1. From the recurrence relation and initial values
SJQ0 = (0,1,1,3), SJQ1 = (1,1,3,5), Binet’s formula for SJQn is obtained as

SJQn = c12n + c2(−1)n = 1
3

[(1,2,4,8)2n − (1,−1,1,−1)(−1)n],

where c1 = SJQ0+SJQ1
3 = α∗

3 and c2 = 2SJQ0−SJQ1
3 = −β∗

3 .

Thus, we get

SJQn = α∗2n −β∗(−1)n

3
.

Similarly, from the recurrence relation and initial values SJLQ0 = (2,1,5,7), SJLQ1 =
(1,5,7,17), Binet’s formula for SJLQn is obtained as

SJLQn = (1,2,4,8)2n + (1,−1,1,−1)(−1)n =α∗2n +β∗(−1)n.

Theorem 3. For n ≥ 1, let Pn be n×n tridiagonal matrix defined by

Pn =



P11 P12 0 0 · · · 0
−2 1 2 0 · · · 0

0 −1 1 2 . . . 0

0 0 −1 1 . . . 0

... . . . . . . . . . . . . 2
0 . . . . . . . . 0 −1 1


and for P11 = SJQ1 and P12 = SJQ0, let P0 = SJQ0, and for P11 = SJLQ1 and P12 = SJLQ0,
let P0 = SJLQ0. Then

detPn = SJQn,

where P11 = SJQ1 and P12 = SJQ0, and

detPn = SJLQn,

where P11 = SJLQ1 and P12 = SJLQ0.

Proof. We prove the theorem for P11 = SJQ1 and P12 = SJQ0. The other condition can be done
similarly.

We use mathematical induction on n. For n = 1 and n = 2, we have

detP1 = P11 = SJQ1 and detP2 = P11 +2P12 = SJQ2.

Let us assume that the equality holds for n−1 and n−2, that is,

detPn−1 = SJQn−1 and detPn−2 = SJQn−2.

Finally, for n, we get

detPn = detPn−1+2detPn−2 = SJQn−1 +2SJQn−2 = SJQn.
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Theorem 4. Let n be positive integer. Then(
1 2
1 0

)n−1 (
SJQ2 SJQ1
SJQ1 SJQ0

)
=

(
SJQn+1 SJQn
SJQn SJQn−1

)
and (

1 2
1 0

)n−1 (
SJLQ2 SJLQ1
SJLQ1 SJLQ0

)
=

(
SJLQn+1 SJLQn
SJLQn SJLQn−1

)
.

This theorem can be proved easily by using mathematical induction on n. Moreover, the
consequence of this theorem, which gives the Cassini’s identities involving the split Jacobsthal
and Jacobsthal-Lucas quaternions, is the following theorem.

Theorem 5. For positive integer n, we have

SJQn+1SJQn−1 −SJQ2
n = (−2)n−1λ

and

SJLQn+1SJLQn−1 −SJLQ2
n = (−1)n2n−19λ,

where λ= (1,−5,−3,−9).

Proof. By taking determinants of the matrices defined in Theorem 4, the proof can be done
easily.

Now we give the Catalan’s identities involving the split Jacobsthal and Jacobsthal-Lucas
quaternions in the following theorem.

Theorem 6. For r ≤ n, let n and r be positive integers. Then

SJQn+rSJQn−r −SJQ2
n = (−2)n−r 1

3
(µ12r −µ2(−1)r)Jr

and

SJLQn+rSJLQn−r −SJLQ2
n = (−1)n−r+12n−r(µ2 +µ14r − (µ1 +µ2)(−2)r),

where µ1 = (1,−13,1,−13) and µ2 = (1,11,−11,−1) .

Proof. By using the Binet’s formula (9), we have

SJQn+rSJQn−r −SJQ2
n

= α∗2n+r −β∗(−1)n+r

3
α∗2n−r −β∗(−1)n−r

3
− α∗2n −β∗(−1)n

3
α∗2n −β∗(−1)n

3

= 1
9

[α∗β∗(−2)n +β∗α∗(−2)n −α∗β∗(−1)n−r2n+r −β∗α∗(−1)n+r2n−r]

= 1
9

[β∗α∗(−1)r(−2)n−r(2r − (−1)r)−α∗β∗(−1)n−r2n(2r − (−1)r)]

= 2r − (−1)r

3
(−2)n−r 1

3
[β∗α∗(−1)r −α∗β∗2r].

Since α∗ = (1,2,4,8) and β∗ = (1,−1,1,−1), and also by considering eq. (3), we obtain the desired
result.

The other identity can be proved similarly by using the Binet’s formula (10).
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Note that if we set r = 1 in Theorem 6, the Cassini’s identities involving the split Jacobsthal
and Jacobsthal-Lucas quaternions, which are given in Theorem 5 can be obtained again.

The following theorem gives the d’Ocagne’s identities involving the split Jacobsthal and
Jacobsthal-Lucas quaternions.

Theorem 7. Let m and n be two positive integers. Then

SJQmSJQn+1 −SJQnSJQm+1 = (−1)n+12nρJm−n

and

SJLQmSJLQn+1 −SJLQnSJLQm+1 = (−2)n3ρ(2m−n − (−1)m−n),

where ρ = (1,3,−7,−5).

Proof. By using the Binet’s formula (10), we have

SJLQmSJLQn+1 −SJLQnSJLQm+1

= (α∗2m +β∗(−1)m)(α∗2n+1 +β∗(−1)n+1)− (α∗2n +β∗(−1)n)(α∗2m+1 +β∗(−1)m+1)

=α∗β∗(−1)n+12m +β∗α∗(−1)m2n+1 −α∗β∗(−1)m+12n −β∗α∗(−1)n2m+1

= (−2)n(−α∗β∗−2β∗α∗)(2m−n − (−1)m−n).

Since α∗ = (1,2,4,8) and β∗ = (1,−1,1,−1), we obtain

SJLQmSJLQn+1 −SJLQnSJLQm+1 = (−2)n3ρ(2m−n − (−1)m−n).

In a similar way, the first identity can be proved.

3. Results
In this section, we derive some identities of the split Jacobsthal quaternions and split Jacobsthal-
Lucas quaternions.

Theorem 8. Let m, n and r be positive integers. Then

2SJQn−1 +SJQn+1 = SJQn, (11)

9SJQ2
n −SJLQ2

n = (−2)n+2(1,−1,−5,−7), (12)

SJQm+n + (−2)nSJQm−n = jnSJQm, (13)

SJLQm+n + (−2)nSJLQm−n = jnSJLQm, (14)

SJQm+n = Jn+1SJQm +2JnSJQm−1, (15)

SJLQm+n = 1
3

( jn+1SJLQm +2 jnSJLQm−1), (16)

SJQ2n = Jn+1SJQn +2JnSJQn−1, (17)

SJQ2n+1 = Jn+1SJQn+1 +2JnSJQn, (18)

SJQm+nSJLQm+r −SJQm+rSJLQm+n = (−1)m+n2m+n+1(1,−1,−5,−7)Jr−n. (19)
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Proof. Throughout the proof, we consider α∗ = (1,2,4,8) and β∗ = (1,−1,1,−1).

(11): By using the Binet’s formula (9), we have

2SJQn−1 +SJQn+1 = 2
α∗2n−1 −β∗(−1)n−1

3
+ α∗2n+1 −β∗(−1)n+1

3

= 1
3

(3α∗2n +3β∗(−1)n)

=α∗2n +β∗(−1)n.

From the Binet’s formula (10), the proof of the identity (11) is completed.

(12): From the Binet’s formulas (9) and (10), we have

9SJQ2
n −SJLQ2

n = 9
α∗2n −β∗(−1)n

3
α∗2n −β∗(−1)n

3
− (α∗2n +β∗(−1)n)(α∗2n +β∗(−1)n)

= (−2)n+1(α∗β∗+β∗α∗)

= (−2)n+2(1,−1,−5,−7).

(13): By using the Binet’s formula (9), we have

SJQm+n + (−2)nSJQm−n = α∗2m+n −β∗(−1)m+n

3
+ (−2)nα

∗2m−n −β∗(−1)m−n

3

= 1
3

(2n + (−1)n)(α∗2m −β∗(−1)m).

From the eqs. (4) and (9), we obtain the desired result.

The proof of the identity (14) can be done similarly by using the Binet’s formula (10).

(15): From the definition of the split Jacobsthal quaternion and the identity Jm+n = JmJn+1 +
2Jm−1Jn (see [9]), we have

SJQm+n = Jm+n + Jm+n+1e1 + Jm+n+2e2 + Jm+n+3e3

= Jn+1(Jm + Jm+1e1 + Jm+2e2 + Jm+3e3)+2Jn(Jm−1 + Jme1 + Jm+1e2 + Jm+2e3)

= Jn+1SJQm +2JnSJQm−1.

The identity (16) can be proved similarly by using the identity jm+n = jm jn+1+2 jm−1 jn. The
identities (17) and (18) can be proved by taking, respectively, m = n and m = n+1 into eq. (15).

(19): By using the Binet’s formulas (9) and (10), we have

SJQm+nSJLQm+r −SJQm+rSJLQm+n

= α∗2m+n −β∗(−1)m+n

3
(α∗2m+r +β∗(−1)m+r)− α∗2m+r −β∗(−1)m+r

3
(α∗2m+n +β∗(−1)m+n)

= 1
3

[α∗β∗(−1)m+r2m+n −β∗α∗(−1)m+n2m+r −α∗β∗(−1)m+n2m+r

−β∗α∗(−1)m+r2m+n]

= 2r−n − (−1)r−n

3
(−1)m+n+12m+n(α∗β∗+β∗α∗).

By considering α∗, β∗, and the Binet’s formula (3), we get

SJQm+nSJLQm+r −SJQm+rSJLQm+n = (−1)m+n2m+n+1(1,−1,−5,−7)Jr−n.
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4. Conclusion
In this study, the split Jacobsthal and Jacobsthal-Lucas quaternions were introduced. Some
results including Binet’s formulas, generating functions and determinantal representations for
these quaternions were given. Moreover, some well-known identities, such as Catalan’s, Cassini’s
and d’Ocagne’s identities, involving the split Jacobsthal and Jacobsthal-Lucas quaternions were
obtained.
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