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1. Introduction
In this research article, the following non-homogenous multi-pantograph equation with variable
coefficients is considered:

z′(t)=λz(t)+
l∑

p=1
βp(t)z(qp(t))+ f (t), t ≥ 0, (1.1)

with initial condition

z(0)= c, (1.2)

where λ, c and qp are constants with 0 < p < l, βp(t) and f (t) are analytical functions.
Functional differential equations with proportional delays are generally known as pantograph
equations. The name pantograph started from the work of Ockendon and Tayler [16]. These
equations emerge in numerous applications, for example, cell growth models, biology, economy,
control, number theory, electrodynamics, astrophysics and many more [3,10,21]. A massive work
has already been done by several authors in order to get the numerical solution of pantograph
equations by using many different approaches [1,4,5,12,17,20,22,23]

Recently, the multi-pantograph equations were studied by numerous researchers in order to
obtain its numerical as well as exact solution. For example, Muroya et al. [15] solved the multi-
pantograph delay equation numerically by utilizing the collocation method. Few properties of the
exact as well as approximate solution of the multi-pantograph equations are showed by Liu and
Li [14]. The Runge-Kutta methods have been applied by Li and Liu [13] to the multi-pantograph
delay equation. The numerical solution of non-homogenous multi-pantograph equation with
variable coefficients are computed via the Taylor method [18]. Application of the homotopy
analysis method (HAM) for solving the multi-pantograph equation is found in [2]. To solve
these equations the successive approximations method has been applied by Jafari [11]. Multi-
pantograph delay equations with variable coefficients are solved by the homotopy perturbation
method (HPM) in [7].

The chief goal of this research work is to apply the Hermite Collocation method to the
equation (1.1)-(1.2). In this methodology solution of the unknown function is expressed in the
form of a linear combination of some basis functions involving unknown coefficients. These basis
functions can be favored as orthogonal polynomials as per their specific properties, which make
the problem under consideration much easier to solve.

This article is organized as follows: Section 2 depicts a few properties of Hermite polynomials.
Application of the Hermite Collocation Method on Multi-Pantograph Delay Equations is
described in Section 3. Subsequently, in Section 4, some examples are provided. Finally,
conclusion is presented at the end.

2. Hermite Polynomials

Hermite polynomials are represented by Hn.

et2
(e−t2

(Hn(t))′)′+λnHn(t)= 0, ∀ t ∈ A, (2.1)
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H′′
n(t)−2tH′

n(t)+2nHn(t), n = 0,1,2, . . . , (2.2)

where Hn are the eigenfunctions of the Sturm-Liouville problem (2.1) and are the solution of
the second order ordinary differential equation (2.2). The Hermite polynomials Hn(t) are set of
orthogonal polynomials over the domain (−∞,∞) with weighting function e−t2

.

Hn+1(t)= 2tHn(t)−2nHn−1(t), n ≥ 1 . (2.3)

In practice, the Hermite polynomials can be calculated by utilizing the recurrence relation (2.3).

H′
n(t)= 2nHn−1(t), n ≥ 1, t ∈ A . (2.4)

The derivative relation (2.4) is an important property of these polynomials [8,19]. Some of the
Initial Hermite polynomials are:

H0(t)= 1, H1(t)= 2t,

H2(t)= 4t2 −2, H3(t)= 8t3 −12t,

H4(t)= 16t4 −48t2 +12, H5(t)= 32t5 −160t3 +120t,

H6(t)= 64t6 −480t4 +720t2 −120, H7(t)= 128t7 −1344t5 +3360t3 −1680t,

H8(t)= 256t8 −3584t6 +13440t4 −13440t2 +1680 .

Any square integrable function f (x) ∈ L2
w(x)(−∞,∞) can be represented in terms of Hermite

polynomials [9] as below:

y(t)=
∞∑
j=0

a jH j(t) .

The solution is assumed to be expressed in the form of truncated Hermite series as:

y(t)=
N∑

j=0
a jH j(t) . (2.5)

The Hermite polynomials are expressed in the vector form as:

H(t)= [
H0(t) H1(t) H2(t) . . . H j(t)

]
.

Thus the finite series (2.5) can be put in a given below matrix form:

[y(t)]=H(t)A, (2.6)

where

A= [
a0 a1 a2 . . . a j

]T .

By using the derivation relation (2.4) of Hermite polynomials the following matrix relation
between the matrices Hk(t) and H(t) is obtained:

H′
0(t)

H′
1(t)

H′
2(t)
...

H′
j−1(t)

H′
j(t)


=



0 0 0 · · · 0 0 0
2.1 0 0 · · · 0 0 0
0 2.2 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 2( j−1) 0 0
0 0 0 · · · 0 2 j 0





H0(t)
H1(t)
H2(t)

...
H j−1(t)
H j(t)


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[H′(t)]T = M[H(t)]T =⇒ H′(t)=H(t)MT (2.7)

where M is referred to as the Hermite operational matrix of derivative. By using (2.7), we get

H′′(t)=H′(t)MT =H(t)(MT)2, H′′′(t)=H′(t)(MT)2 =H(t)(MT)3, H(k)(t)=H(t)(MT)k.

3. Applying the Hermite Collocation Method on
Multi-Pantograph Delay Equations

In this section, we apply the Hermite Collocation method on Multi-Pantograph Delay Equations.
For this, it is assumed that solution of (1.1) can be expanded in the first (N +1) terms Hermite
polynomials as:

z(t)=
N∑

j=0
a jH j(t)=H(t)A . (3.1)

With the help of (2.7) and (3.1) one may say that:

z′(t)=H(t)MTA . (3.2)

Therefore, (2.7), (3.1) and (3.2) implies (1.1) can be re-scripted as follows:

H(t)MTA=λH(t)A+
l∑

p=1
βp(t)H(qp(t))A+ f (t), t ≥ 0

=⇒
[

H(t)MT −λH(t)−
l∑

p=1
βp(t)H

(
qp(t)

)]
A= f (t).

In order to obtain the unknown Hermite coefficient, substituting the collocation points ti = i/N ,
i = 0,1,2, . . . , N thus yields the system of the matrix equations which is as follows:{

H(ti)MT −λH(ti)−
l∑

p=1
βp(ti)H

(
qp(ti)

)}
A= f (ti)= F . (3.3)

Thus, (1.1) is converted into matrix equation comprising of a system of (N +1) linear algebraic
equations involving unknown Hermite coefficients. Here,

F =


f (t0)
f (t1)

...
f (tN)

 , λ=


λ 0 · · · 0

0 λ
. . . 0

...
... . . . ...

0 0 · · · λ

 , βp(ti)=


βp(t0) 0 · · · 0

0 βp(t1) . . . 0
...

... . . . ...
0 0 · · · βp(tN)


and

H(ti)=


H0(t0) H1(t0) · · · HN(t0)
H0(t1) H1(t1) · · · HN(t1)

...
... . . . ...

H0(tN) H1(tN) · · · HN(tN)

 , qp =


qp 0 · · · 0

0 qp
. . . 0

...
... . . . ...

0 0 · · · qp

 .

Moreover, the system of matrix equation (3.3) corresponding to (1.1) can be written in a simplified
way as follows:

W A = F or [W ;F],
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where

W =
{

H(ti)MT −λH(ti)−
l∑

p=1
βp(ti)H

(
qp(ti)

)}
. (3.4)

This can be elaborated in an augmented matrix formation as follows:

[W ;F]=


w00 w01 · · · w0N ; f (t0)
w10 w11 · · · w1N ; f (t1)

...
... . . . ...

...
wN0 wN1 · · · wNN ; g(tN)

 .

With the help of (3.1), the initial condition presented in (1.2) can be presented in matrix form as:

z(0)= z0 =H(0)A= c

=⇒ z0A= c or [z0; c] . (3.5)

Lastly, replacing the last row of the augmented matrix given above by the row matrix (3.5),
the equation (1.1) under conditions (1.2) is reduced to the following linear system of algebraic
equations:

W̃A= G̃, (3.6)

where

[W̃ ;G̃]=



w00 w01 · · · w0N ; f (t0)
w10 w11 · · · w1N ; f (t1)

...
... . . . ...

...
w(N−1)0 w(N−1)1 · · · w(N−1)N ; f (tN−1)

z00 z01 · · · z0N ; c

 .

It is important to note that, If rankW̃ = rank[W̃ ;G̃]= N +1 the linear system (3.6) has a unique
solution and the matrix of Hermite coefficients A is determined by A = W̃−1G̃. In another case,
if determinant i.e. |W̃ | = 0 and rankW̃ = rank[W̃ ;G̃]< N +1, then we may obtain the particular
solutions. But, no solution exists if rankW̃ 6= rank[W̃ ;G̃].

4. Numerical Examples

Example 4.1. Consider the following multi-pantograph delay equations [6]:

z′(t)= 1
2

z(t)+ 1
2

et/2z
(

t
2

)
, 0≤ t ≤ 3 (4.1)

with initial conditions

z(0)= 1 . (4.2)

The exact solution of this equation is z(t)= et. In order to obtain its approximate solution for
N = 7 we apply the presented methodology by expressing the solution in the form of truncated
Hermite series:

z7(t)=
7∑

j=0
a jH j(t)= H(t)A .
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Using the collocation points for N = 7, which are calculated as:{
0,

1
7

,
2
7

,
3
7

,
4
7

,
5
7

,
6
7

,1
}

.

The matrix equation of this example is:

[H(t)MT −λH(t)−µ1H(q1t)]A =G = 0

or

W A =G = 0,

where

W = H(t)MT −λH(t)−µ1H
(

t
2

)
.

Here λ= 1
2 , µ1 = 1

2 et/2, q1 = 1
2 , g(t)= 0.

λ=



1/2 0 0 0 0 0 0 0
0 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0
0 0 0 1/2 0 0 0 0
0 0 0 0 1/2 0 0 0
0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 1/2


,

MT =



0 2 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 12 0
0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 0


,

µ1 =



1/2 0 0 0 0 0 0 0
0 602/1121 0 0 0 0 0 0
0 0 631/1094 0 0 0 0 0
0 0 0 1138/1837 0 0 0 0
0 0 0 0 1523/2289 0 0 0
0 0 0 0 0 611/855 0 0
0 0 0 0 0 0 799/1041 0
0 0 0 0 0 0 0 1225/1486


,

H(t)=



1 0 −2 0 12 0 −120 0
1 2/7 −94/49 −580/343 6517/591 4303/258 −9601/91 −18653/81
1 4/7 −82/49 −1112/343 4741/579 4531/148 −6632/103 −14146/35
1 6/7 −62/49 −1548/343 1858/499 7820/199 −1989/560 −44138/93
1 8/7 −34/49 −1840/343 −1393/708 68361/1681 2183/33 −136917/332
1 10/7 2/49 −1940/343 −4587/551 3569/107 11650/89 −43719/205
1 12/7 46/49 −1800/343 −3745/256 4243/251 9815/56 8687/89
1 2 2 −4 −20 −8 184 464


,
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H
(

t
2

)
=



1 0 −2 0 12 0 −120 0
1 1/7 −97/49 −293/343 6924/589 5491/645 −6864/59 −57251/482
1 2/7 −94/49 −580/343 6517/591 4303/258 −9601/91 −18653/81
1 3/7 −89/49 −855/343 3116/317 3285/136 −22250/253 −15067/46
1 4/7 −82/49 −1112/343 4741/579 4531/148 −6632/103 −14146/35
1 5/7 −73/49 −1345/343 2983/486 10047/281 −4695/131 −22278/49
1 6/7 −62/49 −1548/343 1858/499 7820/199 −1989/560 −44138/93
1 1 −1 −5 1 41 31 −461


.

Thus, we obtain W as follows:

W=



−1 2 2 −12 −12 120 120 −1680
−2325/2242 2092/1175 2051/648 −3072/301 −1217/48 2434/25 5992/19 −35050/27
−589/547 2129/1374 3362/795 −13080/1757 −1492/41 6379/112 28086/61 −20395/36
−787/703 2399/1837 3895/751 −2123/560 −4714/107 1078/411 22696/43 13667/35

−5335/4578 867/827 1327/220 578/855 −6112/129 −2234/37 27875/56 35031/25
−781/643 928/1197 2183/323 6398/1089 −8003/176 −13677/109 11894/33 56603/25
−488/385 355/732 3260/443 2684/229 −5066/135 −7581/41 17102/145 88615/32
−984/743 261/1486 2762/353 2827/156 −8057/353 −37687/164 −63853/299 89893/33


.

The augmented matrix for the problem is:

[W ;G]=



−1 2 2 −12 −12 120 120 −1680 ; 0
−2325/2242 2092/1175 2051/648 −3072/301 −1217/48 2434/25 5992/19 −35050/27 ; 0
−589/547 2129/1374 3362/795 −13080/1757 −1492/41 6379/112 28086/61 −20395/36 ; 0
−787/703 2399/1837 3895/751 −2123/560 −4714/107 1078/411 22696/43 13667/35 ; 0

−5335/4578 867/827 1327/220 578/855 −6112/129 −2234/37 27875/56 35031/25 ; 0
−781/643 928/1197 2183/323 6398/1089 −8003/176 −13677/109 11894/33 56603/25 ; 0
−488/385 355/732 3260/443 2684/229 −5066/135 −7581/41 17102/145 88615/32 ; 0
−984/743 261/1486 2762/353 2827/156 −8057/353 −37687/164 −63853/299 89893/33 ; 0

.

The matrix form for initial condition is:

[z0; c0]= [
1 0 −2 0 12 0 −120 0

]
.

By using the initial condition the new augmented matrix can be obtained as follows:

[W ;G]=



−1 2 2 −12 −12 120 120 −1680 ; 0
−2325/2242 2092/1175 2051/648 −3072/301 −1217/48 20835/214 5992/19 −35050/27 ; 0
−589/547 2129/1374 3713/878 −13080/1757 −1492/41 6379/112 28086/61 −20395/36 ; 0
−787/703 2399/1837 3895/751 −2123/560 −4714/107 1537/586 22696/43 13667/35 ; 0

−5335/4578 867/827 1327/220 578/855 −6112/129 −2234/37 27875/56 35031/25 ; 0
−781/643 928/1197 2183/323 6492/1105 −8003/176 −13677/109 11894/33 56603/25 ; 0
−488/385 1178/2429 3260/443 2684/229 −5066/135 −7581/41 17102/145 88615/32 ; 0

1 0 −2 0 12 0 −120 0 ; 1

.

Solving this system, the unknown Hermite coefficients vector is found as:

A = [1103
863

2317
3547

717
4714

55
1752

133
66278

137
194211

−14
831489

1
116718

]T .

With the help of these coefficients and Hermite polynomial for N = 7 as the approximate solution
can be computed as.

[1,2t,4t2 −2,8t3 −12t,16t4 −48t2 +12,32t5 −160t3 +120t,

64t6 −480t4 +720t2 −120,128t7 −1344t5 +3360t3 −1680t].

By comparing the Exact and Approximate solutions the absolute error obtained for N = 3,5
and 7 is presented in Table 1 and is graphically described in Figure 1.
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Table 1. Absolute Error for Example 4.1

|Z(t)− z(t)|
t N = 3 N = 5 N = 7

0.00 9.99201E-16 8.88178E-16 4.10783E-14
0.20 5.33161E-04 1.77992E-06 2.37037E-07
0.40 8.05588E-04 1.42060E-06 3.21991E-07
0.60 3.59186E-04 2.51928E-06 3.81246E-07
0.80 1.13874E-03 8.63957E-07 6.54700E-07
1.00 8.02391E-03 3.69735E-05 3.09254E-06
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Figure 1. (a) represents the approximate and exact solutions at different value of N while (b) represents
the absolute error at different value of N .

Example 4.2. Consider the multi-pantograph delay equation [24].

z′(t)=−5
6

z(t)+4z
(

t
2

)
+9z

(
t
3

)
+ t2 −1, t ≥ 0 (4.3)

with initial conditions

z(0)= 1. (4.4)

The exact solution of this equation is z(t) = 1+ 67
6 t+ 1675

72 t2 + 12157
1296 t3. Equation (4.3) implies

λ = −5
6 , µ1 = 4, µ2 = 9, q1 = 1

2 , q2 = 1
3 and g(t) = t2 −1. Using the collocation points t = i

N ,
the matrix equation of this example is:

[H(t)MT −λH(t)−µ1H(q1t)−µ2H(q2t)]A =G = t2 −1

or

W A =G = t2 −1,

where

W = H(t)MT −λH(t)−µ1H(q1t)−µ2H(q2t).
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For N = 5, we have

λ=


−5/6 0 0 0 0 0

0 −5/6 0 0 0 0
0 0 −5/6 0 0 0
0 0 0 −5/6 0 0
0 0 0 0 −5/6 0
0 0 0 0 0 −5/6

,

MT =


0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 6 0 0
0 0 0 0 8 0
0 0 0 0 0 10
0 0 0 0 0 0

, µ1 =


4 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 4

, µ2 =


9 0 0 0 0 0
0 9 0 0 0 0
0 0 9 0 0 0
0 0 0 9 0 0
0 0 0 0 9 0
0 0 0 0 0 9

,

H(t)=


1 0 −2 0 12 0
1 2/5 −46/25 −292/125 1627/161 4887/215
1 4/5 −34/25 −536/125 2956/625 16073/422
1 6/5 −14/25 −684/125 −2004/625 11140/279
1 8/5 14/25 −688/125 −7604/625 11767/479
1 2 2 −4 −20 −8

 ,

H
(

t
2

)
=



1 0 −2 0 12 0
1 1/5 −49/25 −149/125 3468/301 5932/501
1 2/5 −46/25 −292/125 1627/161 4887/215
1 3/5 −41/25 −423/125 4881/625 5113/161
1 4/5 −34/25 −536/125 2956/625 16073/422
1 1 −1 −5 1 41

 ,

H
(

t
3

)
=



1 0 −2 0 12 0
1 2/15 −446/225 −875/1097 1992/169 1511/190
1 4/15 −434/225 −1951/1234 1617/145 2687/172
1 2/5 −46/25 −292/125 1627/161 4887/215
1 8/15 −386/225 −1073/352 3181/367 3191/110
1 2/3 −14/9 −100/27 556/81 8312/243

 .

Thus, we obtain W as follows:

W =



−73/6 2 73/3 −12 −146 120
−73/6 1/3 1931/75 −17109/16451 −6335/39 1997/1879
−73/6 −4/3 2009/75 296/25 −15917/93 −28667/188
−73/6 −3 2059/75 666/25 −45026/267 −31057/94
−73/6 −14/3 2081/75 1084/25 −10879/72 −4117/8
−73/6 −19/3 83/3 62 −1030/9 −18320/27

.

The augmented matrix for the problem is:

[W ;G]=



−73/6 2 73/3 −12 −146 120 ; −1
−73/6 1/3 1931/75 −17109/16451 −6335/39 1997/1879 ; −24/25
−73/6 −4/3 2009/75 296/25 −15917/93 −28667/188 ; −21/25
−73/6 −3 2059/75 666/25 −45026/267 −31057/94 ; −16/25
−73/6 −14/3 2081/75 1084/25 −10879/72 −4117/8 ; −9/25
−73/6 −19/3 83/3 62 −1030/9 −18320/27 ; 0

 .

The matrix form for initial condition is:

[z0; c0]= [
1 0 −2 0 12 0

]
.
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By using the initial condition the new augmented matrix can be obtained as follows:

[W ;G]=


−73/6 2 73/3 −12 −146 120 ; −1
−73/6 1/3 1931/75 −17109/16451 −6335/39 1997/1879 ; −24/25
−73/6 −4/3 2009/75 296/25 −15917/93 −28667/188 ; −21/25
−73/6 −3 2059/75 666/25 −45026/267 −31057/94 ; −16/25
−73/6 −14/3 2081/75 1084/25 −10879/72 −4117/8 ; −9/25

1 0 −2 0 12 0 ; 1

 .

Solving this system, the unknown Hermite coefficients vector is found as:

A =


2539/201
2549/202
1832/315
890/759

−4/531023
1/573568

 .

By applying the Hermite collocation method, for N = 3, 4 and 7, the approximate solution is also
calculated. Later, it is compared with exact solution in order to obtain the absolute error. The
absolute errors obtained for N = 3,4 and 7 are tabulated in Table 2 and is graphically described
in Figure 2.

Table 2. Absolute Error for Example 4.2

|Z(t)− z(t)|
t N = 3 N = 5 N = 7

0.00 3.99680E-15 4.26040E-05 3.99680E-14
0.50 1.84323E-06 3.67841E-05 2.45031E-10
1.00 5.37369E-06 1.84480E-05 2.46523E-10
1.50 4.51151E-05 1.29901E-04 4.35122E-10
2.00 4.42980E-04 3.04382E-04 1.48663E-09
2.50 1.92844E-03 5.48701E-04 1.37845E-09
3.00 5.89781E-03 8.69664E-04 2.62413E-08

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

450

500

t

A
p

p
ro

xi
m

at
e 

an
d

 E
xa

ct
 S

o
lu

ti
o

n
s

 

 
Approximate Solution for N=3
Approximate Solution for N=5
Approximate Solution for N=7
Exact Solution

(a)

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6
x 10

−3

t

A
b

so
lu

te
 E

rr
o

r

 

 
Error for N=3
Error for N=5
Error for N=7

(b)

Figure 2. (a) represents the approximate and exact solutions at different value of N while (b) represents
the absolute error at different value of N .
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Example 4.3. Consider the following multi-pantograph equation [15]:

z′(t)=−z(t)+0.25z(0.5t)−0.25e(−0.5t), t ≥ 0 (4.5)

with initial conditions

z(0)= 1. (4.6)

The exact solution of this equation is z(t) = e−t. Here λ=−1, µ1 = 1
4 , q1 = 1

2 and g(t) =−1
4 e

−t
2 .

Using the collocation points t = i
N the matrix equation of this example is:

[H(t)MT +H(t)−µ1H(q1t)]A =G =−1
4

e
−t
2

or

W A =G =−1
4

e
−t
2 ,

where

W = H(t)MT +H(t)−µ1H(q1t).

For N = 3, we have

λ=


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

, MT =


0 2 0 0
0 0 4 0
0 0 0 6
0 0 0 0

, µ1 =


1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4

,

H(t)=


1 0 −2 0
1 2/3 −14/9 −100/27
1 4/3 −2/9 −152/27
1 2 2 −4

, H
(

t
2

)
=


1 0 −2 0
1 1/3 −17/9 −53/27
1 2/3 −14/9 −100/27
1 1 −1 −5

.

Thus we obtain W as follows:

W =


3/4 2 −3/2 −12
3/4 31/12 19/12 −1355/108
3/4 19/6 11/2 −163/27
3/4 15/4 41/4 37/4

.

The augmented matrix for the problem is:

[W ;G]=


3/4 2 −3/2 −12 ; −1/4
3/4 31/12 19/12 −1355/108 ; −397/1876
3/4 19/6 11/2 −163/27 ; −376/2099
3/4 15/4 41/4 37/4 ; −274/1807

.

The matrix form for initial condition is:

[z0; c0]= [
1 0 −2 0

]
.

By using the initial condition the new augmented matrix can be obtained as follows:

[W ;G]=


3/4 2 −3/2 −12 ; −1/4
3/4 31/12 19/12 −1355/108 ; −397/1876
3/4 19/6 11/2 −163/27 ; −376/2099
1 0 −2 0 ; 1

.

Communications in Mathematics and Applications, Vol. 9, No. 4, pp. 601–614, 2018



612 Approximate Solution of Multi-Pantograph Equations With Variable Coefficients. . . : D. Lu et al.

Solving this system, the unknown Hermite coefficients vector is found as:

A =


956/769

−1093/1849
236/1941
−131/8625

.

By applying the Hermite collocation method for N = 5 and 7 the approximate solution is also
calculated. Later, it is compared with exact solution in order to obtain the absolute error. The
absolute errors obtained for N = 3, 5 and 7 are tabulated in Table 3 and is graphically described
in Figure 3.

Table 3. Absolute Error for Example 4.3

|Z(t)− z(t)|
t N = 3 N = 5 N = 7

0.00 9.99201E-16 2.88658E-15 1.99840E-14
0.50 1.32295E-04 4.86271E-07 1.63040E-08
1.00 3.03959E-03 1.34588E-05 2.54904E-07
1.50 3.89361E-02 1.11731E-03 4.83368E-05
2.00 1.62005E-01 1.14402E-02 6.42735E-04
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Figure 3. (a) represents the approximate and exact solutions at different value of N while (b) represents
the absolute error at different value of N .

5. Conclusion
The Hermite collocation method is presented for solving the Multi-Pantograph Equations.
The results obtained by the present methodology reveals that this technique is very accurate
and effective. The numerical results demonstrates that the accuracy improves by increasing
the number of collocation points. It is observed that, by increasing the value of N , the errors
start decreasing more rapidly. Therefore, for better results,using large number N is suggested.
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Another significant advantage of the technique is that Hermite coefficients of the solution are
discovered very easily using the computer based programs.
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