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1. Introduction

The well-known Fibonacci sequence and the golden ratio with the many interesting features
[2,(11,]13]], have been attracted attention of theoretical physics [1,5,6], engineerings [4, 14],
architects [3,|8], orthodontics [12] as much as mathematicians. Numerous features of this
interesting number sequence have been found over time [9]]. Different number sequences,
such as the Pell and Lucas number sequences that relate to Fibonacci sequence, have been
discussed along with studies on Fibonacci sequence, and their different generalizations have
been mentioned [10]. Similarly, Falcon and Plaza introduced the k-Fibonacci sequence, which
is a generalization of these number sequences, giving the classic Fibonacci sequence and the
classic Pell sequence for £ =1 and k& = 2, respectively. For any integer number £ > 1, the kth
Fibonacci sequence {Fn,k}ner\l is defined recurrently by

Fk,n+1 = ka,n +Fk,n—1, (n = 1) (1.1)
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where F, o =0, F, 1 = 1. The solution of the equation (1.1) is

r?—rj
Fn= rl r2’ (1.2)
1-72
where the roots of characteristic equation of (1.1) are r1 = k+\/éez+4, ro = k—\/2k2+4 [7].

In this study, based on the some infinite sums of the Fibonacci numbers [15] is investigated
counterparts in the £-Fibonacci numbers.

2. Main Results

In this section, we obtain some results related to the k-Fibonacci numbers by using [15].
Also, the equalities given for the infinite sums in the theorems corresponds to the limit phrase
of the sums.

Theorem 2.1. For k-Fibonacci numbers, the equality
© 1 E2+k+1 X (-1"
Z = ) +
n=1 Fk,n k
holds.

(2.1)
n=2 Fk,n—le,an,n+1

Proof. We can write the equality

& ( 1 Fy ¢ ) L (st—les+1_F]§s)

s=2 Fk,s Fk,s—le,s+1 s=2 st le st s+1

By using Cassini formula [[7]]
Fk,n—le,n+1 _F]in =(-1)"

for k-Fibonacci numbers in above equality, we have

SN
s=2 Fk,s Fk,s—le,s+1 s=2 Fk,s—le,st,s+1 . .

On the other hand, it is obvious from equation (1.1)
A Fk,s _ 1& Fk,s+1 _Fk,s—l

s=2 Fk,s—le,s+1 k s=2 Fk s—le,s+1

S

+...

12 1

EZ(F F )
92 k,s—1 k,s+1

1

2

[t M it M o
Fkl st Fro Fra Frz Fips

+

RGNS -
Fk,n—3 Fk,n—l Fk,n—2 Fk,n Fk,n—l Fk,n+1

1 ( 1) ( 1 1 )
== |[1+=]- + .
k L k Fk,n Fk,n+1

If the limits of both sides of the last equation are taken for n — oo, then we have
L Fy s ( 1
1+—]-

hm Z —_— = hm -
n—0o0 =9 Fk ,S— 1Fk ,s+1 n—»ook

Fr )
Fk,n Fk,n+1 -
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From equation (1.2), we write
L F s .1 1Y ri-re ri—re
lim ———=lim |1+~ |- —5— T T
n_)oos=2 Fk,s—le,s+1 n—ook rl - rz 7"717'+ - rgH—
. 1 1 ri—rg ri—rog
= lim — 1+E - — — —
n—o0 r
=B - ()
n
It is obvious that r}im (:—i) =0 from rg < r1. Thus we have
— 00
oo Fk,n B k+1
w0 Frn1Frner k2
If the limits of both sides of equation (2.2) are taken for n — oo, then we have
no(] F n -1)°
limZ( - i )zlimZ( -1 )
n—oo. 2o Fk,s Fk,s—le,s+1 n—oo.=9 Fk,s—le,st,s+1
From the last equation, we can write
i": 1 i( Frn N =" )
n=2 Fk,n n=2 Fk,n—le,n+1 Fk,n—le,an,n+1 .
Thus, we obtain
i 1 1 N = ( Frn N =" )
1 Fren Fri 320\Frn-1Frne1 Frn-1FpnFra+1
E+1 & 1"
=1l+—5+
k n=2 Fk,n—le,an,n+1
R2+k+1 X (-1)"
=—D—+ . O
k n=2 Fk,n—le,an,n+1
Theorem 2.2. For n =2, the equality
e 1 1
n=2 Fk,n—le,n+1 k?

holds.

Proof. We can write the equality
n 1 n Fk,s
S;Fk,s—le,s+1 B szzsz,s—le,st,s+l.
From the equation (1.1), we have
n 1 | [ Frsi1—Fps 1

Fk,s—le,st,s+1

s=2 Fk,s—le,S+1 s:2k

>

1 ( 1 1 )
k i\ Frs-1Frs FrsFrse
1
k

+...

B ( 1 1 )+( 1 1
FriFro FroFps FroFps Fp3Fp,

+

1 1 )+( 1 1
Fk,n—ZFk,n—l Fk,n—le,n
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1 1 1 101 1
Tk FpiFrs FraFrpel k [E CFpaFraetl
If the limits of both sides of the last equation are taken for n — oo, then we can write
lim Y — = lime |t |,
n—o0. 9 Fk,s—le,s+1 n—ook |k Fk,an,n+1

B nsidering lim ——4— = in
y considering lim g 0, we obta

o0 11
n=2 Fk,n—le,n+1 k%

Theorem 2.3. For n =1, the equality
> 1 °° 1 1

)3

+ =
nlek,an,n+2Fk,n+3 nlek,an,n+1Fk,n+3 R3(k%+1)

holds.

L 1 L 1
Lo m * 7
s=1Fk,st’s+2Fk,s+3 s=1Fk,st,s+1Fk,s+3

_ i Fr i1 N Fp 40 )
S\ FrsFrsiFE o Fhses FrsFi,  FrsoFrses)
From the equation (1.1), we can write the following equality

& Fk,s+2_Fk,s + Fk,s+3_Fk,s+1 )
s=1 Fk,st,s+1F]is+2Fk,s+3 Fk,sFlz,s+1Fk,s+2Fk,s+3
1 1
| Fk,sF]is+1Fk,s+2 Fk,s+1F]§,s+2Fk,s+3

1 1 1 1 1
~ 7 ( 2 B 2 ) + ( 2 - 2 ) +
k\\FraFjoFrs FroFisFra) \FroFysFra FrsFy Fis

1 1
T F, o F? Froy FronF? F r
knt'p p1t kon+2 kon+18p 5 ol kn+3
Thus, we obtain

) ) -

2 2 -
s=1 Fk,st’S+2Fk,s+3 s=1 Fk,st,s+1Fk,s+3 k

1 1
k2(k2 +1) Fk,n+1F]§ n+2Fk,n+3

If the limits of both sides of the last equation are taken for n — oo, then we can write

4 1 1
lim | ) 5 +) 5
nmeo slek,st’s+2Fk,s+3 slek,st,s+1Fk,s+3

1 1
k2(k2 +1) Fk,n+1F]% n+2Fk,n+3

1
=
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. . . 1 _ .
By considering ’}1330 oL P 0, we obtain
x 1 x 1 1
2 2 + 2 = L3(k2 : O
= Fk,an,n+2Fk,n+3 n=1 Fk,an,n+1Fk,n+3 k2R +1)
Theorem 2.4. For k-Fibonacci numbers, the equalities
L k,s—1
@ Frna1=]] (k+ — )
s=1 Fk,S
F n _1 S
(b) k,n+1l —ha Z ( )
Fk,n s=2 Fk,st,s—l
hold.
Proof. (a)
Frni1tFpnFrn-1---Froe & (Frs+1
Fk,n+1 = H .
Fk,an,n—1~~-Fk,2Fk,1 s=1 Fk,s
From the equation (1.1), we have
n(RFgs+Frs-1 L Fprs-1
Fpoa= [ (o Phec) (i, Pt
o s:l_[1 Fk,s 31:[1 Fk,s
(b)
Frn+1 (Fk,n+1 _ Fin )+( Frn _Fk,n—l) N +(Fk,3 _Fk,2) +Fk,2
Fpn Frn Frpn1) \Frp1 Frao) =~ \Fre Fri) Fp
no(F F
ke Y ks+l ks )
s=2 Fk,s Fk,s—l
2
Cps i Frsi1Fps-1-F) .
s=2 Fk st s—1
From Cassini formula for k-Fibonacci numbers, we obtain
F n _1 S
k,n+1 —k+ Z ( ) ) O
Fpn =2 \FpsFrs1

Theorem 2.5. For k-Fibonacci numbers, the equality
o0 F & -1)"
nlek,n+1Fk,n+2 k n=2 Fk,n—le,an,n+1
holds.

Proof. From the equation (1.1I), we can write

2 Frs W & Frsia—kFpsi i( k )
s=1 Fk,s+1Fk,s+2 - s=1 Fk s+1Fk s+2 =1 Fk s+1 Fk,s+2
RN SR NN SR
Fro Fhrg Fk,3 Frg4 Fk,4 Frs =
1 k 1 k

+
Fk,n Fk,n+1 Fk,n+1 Fk,n+2
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1 1 1 1 1
—_— - +(1-k) + +.o+ +
Fk 2 Frno Fk 3 Fra Fr, Fpn+1

1 k 1 1 1 1
—_— - +(1-k) + + +...+
Fk 2 Fpnpio Fk 1 Fk,z Frz Fra Frn

+( 1 B 1 B 1 )]
Frne1 Fri Frg
From Theorem we have
- Frs 1 k
S FpsiiFrse2 Fro Frpso

1
L(1-h) k2 +k+

i (-1)°
s=2 Fk,s—le,st,s+1

N ( 1 1 1 )]
Frni1 Fr1i Frpll
If the limits of both sides of the last equation for n — oo are taken and necessary arrangements
are made, then we write

. Fys , k2 + k +1
lim 3 — % Jim
n—eo .3 Fk,s+1Fk,s+2 n—oo

1 k
Fro Fpni2

i (=1)°
s=2 st lests+1

+(1-k)

+( 1 1 1 ) ]

Frnt1 Fkl Fralll

—O and lim F —0 we obtain
n—oo

By considering lim 7—— k
n—ool k,n+

o) F 1 o) —1)"
Y — M - ha-m| ) D . O
n=1 Fk n+1Fk n+2 k n=2 Fk,n—le,an,n+1

Theorem 2.6. For k-Fibonacci numbers, the equality
X Frnv1  k*+EP42R%+1 1-Fk (& (1"
i1 FenFrnes R2(2+1)° TRl ( )
holds.

n=2 Fk,n—le,an,n+1

Proof. From the equation (1.1), we can write
Frsi3=kFpsi2+Fp i1
=k (kFpoe1+Frs) +Frsi1
= (B2 +1)Fp 41+ kFps.
From the last equation, it is obvious

k2—1+1 [Frsi3—kFps]. (2.3)
By using the equaiton (2.3) in the following equation, we have

o Frse1 1 i (Fk,s+3 _ka,s)

1 FrsFrse3 k241 1\ FpoFps13

1 i( 1k )
_k2+1s:1 Fk,s Fk,s+3 .

Fk,s+1 =
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From the last sum, we can write

" Fpgi 1 1 1 1 k k k n
=3 + + — — - +(1-k)).
1 FrsFrsis k°+1|Fr1 Fro Frz Frpi1 Fraiz Frass —aFrs
1 ( 1 1.1k k k )
k2+1(\Fr1 Fra Frs Frns1 Frnia Frnss
noo1 1 1 1
+(A-R)|Y —— -
c1Frs Fr1 Frpo Fpgs
1 1 1 1 1 1
= ( + - - )+(1 k)z
k% +1 Fri Fre Fr3z Frpi1 Fravz Frass st
1 1 1 1 1 noo]
= k( + I - - +(1-k)Y
k= +1 kB k*+1 Frpy1 Frni2z Frpss o1 Frs

If the limits of both sides of the last equation are taken for n — oo, then we can write

.o Frsa . 1 ( 1 1 1 1 1 )
lim Y —2 = lim ——— |k[1+ =+ - - - +(1-F)
n—»oosg"l Fy st ,$+3 n—ook?+1 [ B k2+1 Fk ,n+1 Fy, ,n+2 Fy ,n+3 Z

By considering lim # kﬂ =0, lim +—— Friss k_ -0, lim

n—oo n—oot k,n+2 n—»ooF

F k,s ]
=0 and from Theorem . we obtain

O]

i Fin1 k4+k3+2k2+1+ 1-k -

n=1 Fk n+3 k2 (k2 + 1)2 k2+1 n=2 Fk,n—le,an,n+1 .
Theorem 2.7. For n =2, the equality

) Fy 2n _ E2+1

Z 2 2 - 3
Fk n+1Fk ,n—1 k

holds.

Proof. From the [7]], we can write
Frnsm =FpnFrm+1+Frn-1Fpm-
If we get n = m in the last equation, it is obvious
Fron=FrnFpni1+Frn-1Fpn
=Fpn (Frns1+Frn-1).

By using the equation (1.1), we have

1 1
E (Fk,n+1 _Fk,n—l) (Fk,n+1 +Fk,n—1) = E (Fz,,ﬁ.l _FZ,n—l) . (2.4)

By using the equation (2.4) in the following equation, we have

2
i i ks+1 st 1 i ( 1 )
w2 2 2 2
F F s=2 F = ks 1 Fk s+1

s=2 ks+1 ks—1

Fk,2n =
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If the limits of both sides of the last equation are taken for n — oo, then we can write

n F 1 1 1 1
. k,2 .
hmZﬁ:hmE 1+ﬁ_T_2— .
n—oo n—oo
§=2 Fk,s+1Fk,s—1 Fk,n Fk,n+1
By considering lim —5— =0, lim —+— =0, we have
n’_)ooka,n n—>OOka,n+1

2 2 - 3 -

n=2 Fk,n+1Fk,n—1 k
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