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1. Introduction
The well-known Fibonacci sequence and the golden ratio with the many interesting features
[2, 11, 13], have been attracted attention of theoretical physics [1, 5, 6], engineerings [4, 14],
architects [3, 8], orthodontics [12] as much as mathematicians. Numerous features of this
interesting number sequence have been found over time [9]. Different number sequences,
such as the Pell and Lucas number sequences that relate to Fibonacci sequence, have been
discussed along with studies on Fibonacci sequence, and their different generalizations have
been mentioned [10]. Similarly, Falcon and Plaza introduced the k-Fibonacci sequence, which
is a generalization of these number sequences, giving the classic Fibonacci sequence and the
classic Pell sequence for k = 1 and k = 2, respectively. For any integer number k > 1, the kth
Fibonacci sequence

{
Fn,k

}
n∈N is defined recurrently by

Fk,n+1 = kFk,n +Fk,n−1, (n> 1) (1.1)
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where Fk,0 = 0, Fk,1 = 1. The solution of the equation (1.1) is

Fk,n = rn
1 − rn

2

r1 − r2
, (1.2)

where the roots of characteristic equation of (1.1) are r1 = k+
p

k2+4
2 , r2 = k−

p
k2+4
2 [7].

In this study, based on the some infinite sums of the Fibonacci numbers [15] is investigated
counterparts in the k-Fibonacci numbers.

2. Main Results
In this section, we obtain some results related to the k-Fibonacci numbers by using [15].
Also, the equalities given for the infinite sums in the theorems corresponds to the limit phrase
of the sums.

Theorem 2.1. For k-Fibonacci numbers, the equality
∞∑

n=1

1
Fk,n

= k2 +k+1
k2 +

∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1
(2.1)

holds.

Proof. We can write the equality
n∑

s=2

(
1

Fk,s
− Fk,s

Fk,s−1Fk,s+1

)
=

n∑
s=2

(
Fk,s−1Fk,s+1 −F2

k,s

Fk,s−1Fk,sFk,s+1

)
.

By using Cassini formula [7]

Fk,n−1Fk,n+1 −F2
k,n = (−1)n

for k-Fibonacci numbers in above equality, we have
n∑

s=2

(
1

Fk,s
− Fk,s

Fk,s−1Fk,s+1

)
=

n∑
s=2

(
(−1)s

Fk,s−1Fk,sFk,s+1

)
. (2.2)

On the other hand, it is obvious from equation (1.1)
n∑

s=2

Fk,s

Fk,s−1Fk,s+1
= 1

k

n∑
s=2

Fk,s+1 −Fk,s−1

Fk,s−1Fk,s+1

= 1
k

n∑
s=2

(
1

Fk,s−1
− 1

Fk,s+1

)
= 1

k

[(
1

Fk,1
− 1

Fk,3

)
+

(
1

Fk,2
− 1

Fk,4

)
+

(
1

Fk,3
− 1

Fk,5

)
+ . . .

+
(

1
Fk,n−3

− 1
Fk,n−1

)
+

(
1

Fk,n−2
− 1

Fk,n

)
+

(
1

Fk,n−1
− 1

Fk,n+1

)]
= 1

k

[(
1+ 1

k

)
−

(
1

Fk,n
+ 1

Fk,n+1

)]
.

If the limits of both sides of the last equation are taken for n →∞, then we have

lim
n→∞

n∑
s=2

Fk,s

Fk,s−1Fk,s+1
= lim

n→∞
1
k

[(
1+ 1

k

)
−

(
1

Fk,n
+ 1

Fk,n+1

)]
.
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From equation (1.2), we write

lim
n→∞

n∑
s=2

Fk,s

Fk,s−1Fk,s+1
= lim

n→∞
1
k

[(
1+ 1

k

)
− r1 − r2

rn
1 − rn

2
− r1 − r2

rn+1
1 − rn+1

2

]

= lim
n→∞

1
k

(
1+ 1

k

)
− r1 − r2

rn
1

[
1−

(
r2
r1

)n] − r1 − r2

rn+1
1

[
1−

(
r2
r1

)n+1
]
 .

It is obvious that lim
n→∞

(
r2
r1

)n = 0 from r2 < r1. Thus we have
∞∑

n=2

Fk,n

Fk,n−1Fk,n+1
= k+1

k2 .

If the limits of both sides of equation (2.2) are taken for n →∞, then we have

lim
n→∞

n∑
s=2

(
1

Fk,s
− Fk,s

Fk,s−1Fk,s+1

)
= lim

n→∞

n∑
s=2

(
(−1)s

Fk,s−1Fk,sFk,s+1

)
.

From the last equation, we can write
∞∑

n=2

1
Fk,n

=
∞∑

n=2

( Fk,n

Fk,n−1Fk,n+1
+ (−1)n

Fk,n−1Fk,nFk,n+1

)
.

Thus, we obtain
∞∑

n=1

1
Fk,n

= 1
Fk,1

+
∞∑

n=2

( Fk,n

Fk,n−1Fk,n+1
+ (−1)n

Fk,n−1Fk,nFk,n+1

)
= 1+ k+1

k2 +
∞∑

n=2

(−1)n

Fk,n−1Fk,nFk,n+1

= k2 +k+1
k2 +

∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1
.

Theorem 2.2. For n ≥ 2, the equality
∞∑

n=2

1
Fk,n−1Fk,n+1

= 1
k2

holds.

Proof. We can write the equality
n∑

s=2

1
Fk,s−1Fk,s+1

=
n∑

s=2

Fk,s

Fk,s−1Fk,sFk,s+1
.

From the equation (1.1), we have
n∑

s=2

1
Fk,s−1Fk,s+1

=
n∑

s=2

1
k

[ Fk,s+1 −Fk,s−1

Fk,s−1Fk,sFk,s+1

]
= 1

k

n∑
s=2

(
1

Fk,s−1Fk,s
− 1

Fk,sFk,s+1

)
= 1

k

[(
1

Fk,1Fk,2
− 1

Fk,2Fk,3

)
+

(
1

Fk,2Fk,3
− 1

Fk,3Fk,4

)
+ . . .

+
(

1
Fk,n−2Fk,n−1

− 1
Fk,n−1Fk,n

)
+

(
1

Fk,n−1Fk,n
− 1

Fk,nFk,n+1

)]
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= 1
k

[
1

Fk,1Fk,2
− 1

Fk,nFk,n+1

]
= 1

k

[
1
k
− 1

Fk,nFk,n+1

]
.

If the limits of both sides of the last equation are taken for n →∞, then we can write

lim
n→∞

n∑
s=2

1
Fk,s−1Fk,s+1

= lim
n→∞

1
k

[
1
k
− 1

Fk,nFk,n+1

]
.

By considering lim
n→∞

1
Fk,nFk,n+1

= 0, we obtain
∞∑

n=2

1
Fk,n−1Fk,n+1

= 1
k2 .

Theorem 2.3. For n ≥ 1, the equality
∞∑

n=1

1
Fk,nF2

k,n+2Fk,n+3
+

∞∑
n=1

1
Fk,nF2

k,n+1Fk,n+3
= 1

k3(k2 +1)

holds.

Proof.
n∑

s=1

1
Fk,sF2

k,s+2Fk,s+3
+

n∑
s=1

1
Fk,sF2

k,s+1Fk,s+3

=
n∑

s=1

(
Fk,s+1

Fk,sFk,s+1F2
k,s+2Fk,s+3

+ Fk,s+2

Fk,sF2
k,s+1Fk,s+2Fk,s+3

)
.

From the equation (1.1), we can write the following equality

= 1
k

n∑
s=1

(
Fk,s+2 −Fk,s

Fk,sFk,s+1F2
k,s+2Fk,s+3

+ Fk,s+3 −Fk,s+1

Fk,sF2
k,s+1Fk,s+2Fk,s+3

)

= 1
k

n∑
s=1

[
1

Fk,sF2
k,s+1Fk,s+2

− 1
Fk,s+1F2

k,s+2Fk,s+3

]

= 1
k

[(
1

Fk,1F2
k,2Fk,3

− 1
Fk,2F2

k,3Fk,4

)
+

(
1

Fk,2F2
k,3Fk,4

− 1
Fk,3F2

k,4Fk,5

)
+ . . .

+ 1
Fk,nF2

k,n+1Fk,n+2
− 1

Fk,n+1F2
k,n+2Fk,n+3

]
.

Thus, we obtain
n∑

s=1

1
Fk,sF2

k,s+2Fk,s+3
+

n∑
s=1

1
Fk,sF2

k,s+1Fk,s+3
= 1

k

[
1

k2(k2 +1)
− 1

Fk,n+1F2
k,n+2Fk,n+3

]
.

If the limits of both sides of the last equation are taken for n →∞, then we can write

lim
n→∞

(
n∑

s=1

1
Fk,sF2

k,s+2Fk,s+3
+

n∑
s=1

1
Fk,sF2

k,s+1Fk,s+3

)

= lim
n→∞

1
k

[
1

k2(k2 +1)
− 1

Fk,n+1F2
k,n+2Fk,n+3

]
.
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By considering lim
n→∞

1
Fk,n+1F2

k,n+2Fk,n+3
= 0, we obtain

∞∑
n=1

1
Fk,nF2

k,n+2Fk,n+3
+

∞∑
n=1

1
Fk,nF2

k,n+1Fk,n+3
= 1

k3(k2 +1)
.

Theorem 2.4. For k-Fibonacci numbers, the equalities

(a) Fk,n+1 =
n∏

s=1

(
k+ Fk,s−1

Fk,s

)
,

(b)
Fk,n+1

Fk,n
= k+

n∑
s=2

(−1)s

Fk,sFk,s−1
.

hold.

Proof. (a)

Fk,n+1 =
Fk,n+1Fk,nFk,n−1 . . .Fk,2

Fk,nFk,n−1 . . .Fk,2Fk,1
=

n∏
s=1

(Fk,s+1

Fk,s

)
.

From the equation (1.1), we have

Fk,n+1 =
n∏

s=1

(kFk,s +Fk,s−1

Fk,s

)
=

n∏
s=1

(
k+ Fk,s−1

Fk,s

)
.

(b)
Fk,n+1

Fk,n
=

(Fk,n+1

Fk,n
− Fk,n

Fk,n−1

)
+

( Fk,n

Fk,n−1
− Fk,n−1

Fk,n−2

)
+ . . .+

(Fk,3

Fk,2
− Fk,2

Fk,1

)
+ Fk,2

Fk,1

= k+
n∑

s=2

(Fk,s+1

Fk,s
− Fk,s

Fk,s−1

)

= k+
n∑

s=2

(
Fk,s+1Fk,s−1 −F2

k,s

Fk,sFk,s−1

)
.

From Cassini formula for k-Fibonacci numbers, we obtain
Fk,n+1

Fk,n
= k+

n∑
s=2

(
(−1)s

Fk,sFk,s−1

)
.

Theorem 2.5. For k-Fibonacci numbers, the equality
∞∑

n=1

Fk,n

Fk,n+1Fk,n+2
= 1

k2 + (1−k)

( ∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1

)
holds.

Proof. From the equation (1.1), we can write
n∑

s=1

Fk,s

Fk,s+1Fk,s+2
=

n∑
s=1

Fk,s+2 −kFk,s+1

Fk,s+1Fk,s+2
=

n∑
s=1

(
1

Fk,s+1
− k

Fk,s+2

)
=

[
1

Fk,2
− k

Fk,3
+ 1

Fk,3
− k

Fk,4
+ 1

Fk,4
− k

Fk,5
+ . . .

+ 1
Fk,n

− k
Fk,n+1

+ 1
Fk,n+1

− k
Fk,n+2

]
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= 1
Fk,2

− k
Fk,n+2

+ (1−k)
(

1
Fk,3

+ 1
Fk,4

+ . . .+ 1
Fk,n

+ 1
Fk,n+1

)
= 1

Fk,2
− k

Fk,n+2
+ (1−k)

[(
1

Fk,1
+ 1

Fk,2
+ 1

Fk,3
+ 1

Fk,4
+ . . .+ 1

Fk,n

)
+

(
1

Fk,n+1
− 1

Fk,1
− 1

Fk,2

)]
From Theorem 2.1, we have

n∑
s=1

Fk,s

Fk,s+1Fk,s+2
= 1

Fk,2
− k

Fk,n+2
+ (1−k)

[
k2 +k+1

k2 +
n∑

s=2

(−1)s

Fk,s−1Fk,sFk,s+1

+
(

1
Fk,n+1

− 1
Fk,1

− 1
Fk,2

)]
.

If the limits of both sides of the last equation for n → ∞ are taken and necessary arrangements
are made, then we write

lim
n→∞

n∑
s=1

Fk,s

Fk,s+1Fk,s+2
= lim

n→∞

[
1

Fk,2
− k

Fk,n+2
+ (1−k)

[
k2 +k+1

k2 +
n∑

s=2

(−1)s

Fk,s−1Fk,sFk,s+1

+
(

1
Fk,n+1

− 1
Fk,1

− 1
Fk,2

)]]
.

By considering lim
n→∞

k
Fk,n+2

= 0 and lim
n→∞

1
Fk,n+1

= 0, we obtain

∞∑
n=1

Fk,n

Fk,n+1Fk,n+2
= 1

k2 + (1−k)

( ∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1

)
.

Theorem 2.6. For k-Fibonacci numbers, the equality
∞∑

n=1

Fk,n+1

Fk,nFk,n+3
= k4 +k3 +2k2 +1

k2
(
k2 +1

)2 + 1−k
k2 +1

( ∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1

)
holds.

Proof. From the equation (1.1), we can write

Fk,s+3 = kFk,s+2 +Fk,s+1

= k
(
kFk,s+1 +Fk,s

)+Fk,s+1

= (
k2 +1

)
Fk,s+1 +kFk,s.

From the last equation, it is obvious

Fk,s+1 =
1

k2 +1
[
Fk,s+3 −kFk,s

]
. (2.3)

By using the equaiton (2.3) in the following equation, we have
n∑

s=1

Fk,s+1

Fk,sFk,s+3
= 1

k2 +1

n∑
s=1

(Fk,s+3 −kFk,s

Fk,sFk,s+3

)
= 1

k2 +1

n∑
s=1

(
1

Fk,s
− k

Fk,s+3

)
.
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From the last sum, we can write
n∑

s=1

Fk,s+1

Fk,sFk,s+3
= 1

k2 +1

[
1

Fk,1
+ 1

Fk,2
+ 1

Fk,3
− k

Fk,n+1
− k

Fk,n+2
− k

Fk,n+3
+ (1−k)

n∑
s=4

1
Fk,s

]

= 1
k2 +1

[(
1

Fk,1
+ 1

Fk,2
+ 1

Fk,3
− k

Fk,n+1
− k

Fk,n+2
− k

Fk,n+3

)

+ (1−k)

(
n∑

s=1

1
Fk,s

− 1
Fk,1

− 1
Fk,2

− 1
Fk,3

)]

= 1
k2 +1

[
k

(
1

Fk,1
+ 1

Fk,2
+ 1

Fk,3
− 1

Fk,n+1
− 1

Fk,n+2
− 1

Fk,n+3

)
+ (1−k)

n∑
s=1

1
Fk,s

]

= 1
k2 +1

[
k

(
1+ 1

k
+ 1

k2 +1
− 1

Fk,n+1
− 1

Fk,n+2
− 1

Fk,n+3

)
+ (1−k)

n∑
s=1

1
Fk,s

]
.

If the limits of both sides of the last equation are taken for n →∞, then we can write

lim
n→∞

n∑
s=1

Fk,s+1

Fk,sFk,s+3
= lim

n→∞
1

k2 +1

[
k

(
1+ 1

k
+ 1

k2 +1
− 1

Fk,n+1
− 1

Fk,n+2
− 1

Fk,n+3

)
+ (1−k)

n∑
s=1

1
Fk,s

]
.

By considering lim
n→∞

k
Fk,n+1

= 0, lim
n→∞

k
Fk,n+2

= 0, lim
n→∞

k
Fk,n+3

= 0 and from Theorem 2.1, we obtain

∞∑
n=1

Fk,n+1

Fk,nFk,n+3
= k4 +k3 +2k2 +1

k2
(
k2 +1

)2 + 1−k
k2 +1

( ∞∑
n=2

(−1)n

Fk,n−1Fk,nFk,n+1

)
.

Theorem 2.7. For n ≥ 2, the equality
∞∑

n=2

Fk,2n

F2
k,n+1F2

k,n−1

= k2 +1
k3

holds.

Proof. From the [7], we can write

Fk,n+m = Fk,nFk,m+1 +Fk,n−1Fk,m.

If we get n = m in the last equation, it is obvious

Fk,2n = Fk,nFk,n+1 +Fk,n−1Fk,n

= Fk,n
(
Fk,n+1 +Fk,n−1

)
.

By using the equation (1.1), we have

Fk,2n = 1
k

(
Fk,n+1 −Fk,n−1

)(
Fk,n+1 +Fk,n−1

)= 1
k

(
F2

k,n+1 −F2
k,n−1

)
. (2.4)

By using the equation (2.4) in the following equation, we have
n∑

s=2

Fk,2s

F2
k,s+1F2

k,s−1

= 1
k

n∑
s=2

F2
k,s+1 −F2

k,s−1

F2
k,s+1F2

k,s−1

= 1
k

[
n∑

s=2

(
1

F2
k,s−1

− 1
F2

k,s+1

)]

= 1
k

[
1+ 1

k2 − 1
F2

k,n

− 1
F2

k,n+1

]
.
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If the limits of both sides of the last equation are taken for n →∞, then we can write

lim
n→∞

n∑
s=2

Fk,2s

F2
k,s+1F2

k,s−1

= lim
n→∞

1
k

[
1+ 1

k2 − 1
F2

k,n

− 1
F2

k,n+1

]
.

By considering lim
n→∞

1
kF2

k,n
= 0, lim

n→∞
1

kF2
k,n+1

= 0, we have

∞∑
n=2

Fk,2n

F2
k,n+1F2

k,n−1

= k2 +1
k3 .
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