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1. Introduction
Measles is an acute, high contagious viral disease characterized by final stage maculopapular
rash erupting successively over the neck, face, body, arms and legs and accompanied by high
fever. Measles is an RNA virus. Virus is present in the nasopharyngeal secretions, blood and
urine. It is worldwide disease both epidemic and endemic. Highest incidence is in winter. Mode
of transmission is by direct or indirect contact and droplet spray. The period of infectivity is
4 days before and 5 days after the appearance of rash. The essential lesion is in the skin,
respiratory tract, intestinal tract and conjunctivae. Koplik’s spot appear on skin which consist
serous exudate and proliferation of endothelial cells. Measles is a communicable disease due
to which 200 million people are died worldwide in the last 150 years. Mathematical modeling
becomes the important tool to study the spread, control and optimal control of communicable
diseases [1,3,5,6].

In this paper, we deal with the numerical solution of SEIR reaction diffusion epidemic
model [2]. The main theme of this work is to develop an unconditional, positivity preserving
explicit FD scheme [4,7] for SEIR reaction diffusion epidemic model. Jansen and Twizell [9]
developed an unconditional, positivity preserving finite difference scheme for SEIR measles
epidemic model containing ordinary differential equations. Chinviriyasit et al. [8] proposed
an unconditionally convergent implicit FD scheme for the solution of diffusive SIR whooping
cough model. Al-Showikh and Twizell [2] presented an implicit FD scheme for the numerical
solution of SEIR measles reaction diffusion epidemic model. Nonstandard Finite Difference
(NSFD) schemes are also positivity preserving, unconditionally convergent FD schemes. NSFD
schemes are introduced by Mickens [10]. NSFD schemes are commonly used for the numerical
solutions of epidemic models containing ordinary differential equations [11–13].

Here, a spatially-structured system will be studied and three numerical methods are used
for the numerical solution of the spatial spread of Measles in one space dimension.

∂S
∂t

=µN −µS−βIS+ds
∂2S
∂x2

∂E
∂t

=βIS−µE−σE+dE
∂2E
∂x2

∂I
∂t

=σE−µI −γI +dI
∂2I
∂x2

∂R
∂t

= γI −µR+dR
∂2R
∂x2


(1.1)

Since R is not present in first three equations, so system (1.1) can be written as

∂S
∂t

=µN −µS−βIS+ds
∂2S
∂x2

∂E
∂t

=βIS−µE−σE+dE
∂2E
∂x2

∂I
∂t

=σE−µI −γI +dI
∂2I
∂x2


(1.2)
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The initial conditions are of the form

S (x,0)= S0, E (x,0)= E0, I (x,0)= I0, 0≤ x ≤ L

and the boundary conditions are
∂S(0, t)
∂x

= ∂E(0, t)
∂x

= ∂I(0, t)
∂x

= 0; t > 0,

∂S(L, t)
∂x

= ∂E(L, t)
∂x

= ∂I(L, t)
∂x

= 0; t > 0,

where

S = Susceptible individuals

E = Exposed individuals

I = Infected individuals

R = Recovered individuals

µ= Birth rate and death rate

β= the rate at which susceptible individuals are infected by those who are infectious

σ= the rate at which exposed individuals become infected

γ= the rate at which infected individuals recover

µ, β, σ, γ are considered as positive parameters

2. Equilibrium Points of the System

There are two equilibrium points of SEIR epidemic model, Disease Free Equilibrium (DFE) and
Endemic Equilibrium (EE).

DFE point is (SDFE,EDFE, IDFE)= (N,0,0)

EE point is (SEE,EEE, IEE)=
(

N
R0

,
µN
µ+σ

(
1− 1

R0

)
,
µ

β
(R0 −1)

)
whereas R0 = σβN

(µ+σ)(µ+γ) , when ds = dE = dI = 0 is the basic reproductive number with the
conditions that

if R0 < 1, No epidemics

if R0 > 1, Epidemics occurs

3. Numerical Methods
In this section, we rewrite system (1.2)

∂S
∂t

=µN −µS−βIS+ds
∂2S
∂x2 , (3.1)

∂E
∂t

=βIS−µE−σE+dE
∂2E
∂x2 , (3.2)

∂I
∂t

=σE−µI −γI +dI
∂2I
∂x2 . (3.3)
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The initial conditions are of the form

S (x,0)= S0,E (x,0)= E0, I (x,0)= I0, 0≤ x ≤ L

and the boundary conditions are
∂S(0, t)
∂x

= ∂E(0, t)
∂x

= ∂I(0, t)
∂x

= 0; t > 0,

∂S(L, t)
∂x

= ∂E(L, t)
∂x

= ∂I(L, t)
∂x

= 0; t > 0.

Divide [0,L]× [0,T] into M×N with step sizes h = L
M and τ= T

N .

Grid points are

xi = ih, i = 0,1,2, . . . , M,

tn = nτ, n = 0,1,2, . . . , N,

Sn
i , En

i and In
i are denoted as FD approximations of S (ih,nτ), E (ih,nτ) and I(ih,nτ),

respectively.

To solve the above system, we use three different finite difference schemes, two classical
schemes and a newly developed finite difference scheme.

The classical schemes are forward Euler scheme and Crank Nicolson scheme. Third FD
scheme is an unconditionally positivity preserving scheme proposed by Chen-Charpentier et
al. [7] and Appadu et al. [4], which is developed with the help of rules defined by Mickens [10].

Forward Euler explicit scheme for the system is

Sn+1
i = Sn

i +τµN −τµSn
i −τβSn

i In
i +R1(Sn

i−1−2Sn
i +Sn

i+1) , (3.4)

En+1
i = En

i −τ
(
µ+σ)

En
i +τβSn

i In
i +R2(En

i−1−2En
i +En

i+1) , (3.5)

In+1
i = In

i −τ
(
µ+γ)

In
i +τσEn

i +R3(In
i−1−2In

i +In
i+1) . (3.6)

Crank Nicolson scheme for the system is

(1+R1)Sn+1
i − R1

2
(
Sn+1

i−1 +Sn+1
i+1

)= (1−R1)Sn
i +

R1

2
(Sn

i−1 +Sn
i+1)+τµN −τµSn

i −τβSn
i In

i , (3.7)

(1+R2)En+1
i − R2

2
(
En+1

i−1 +En+1
i+1

)= (1−R2)En
i +

R2

2
(En

i−1 +En
i+1)−τ(µ+σ)In

i +τβSn
i In

i , (3.8)

(1+R3) In+1
i − R3

2
(
In+1

i−1 + In+1
i+1

)= (1−R3) In
i +

R3

2
(In

i−1 + In
i+1)−τ(µ+γ)In

i +τσEn
i . (3.9)

Here,

R1 = dS
τ

h2 ,R2 = dE
τ

h2 and R3 = dI
τ

h2 .

Now the proposed FD scheme for (3.1) is constructed as follows

Sn+1
i = Sn

i +R1
(
Sn

i−1 +Sn
i+1

)−2R1Sn+1
i +τµN −τβIn

i Sn+1
i −τµSn+1

i . (3.10)

After some computation, we have

Sn+1
i = Sn

i +R1(Sn
i−1 +Sn

i+1)+µτN
1+2R1 +τµ+τβIn

i
. (3.11)
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In similar way, we have

En+1
i = En

i +R2(En
i−1 +En

i+1)+τβSn
i In

i

1+2R2 +τ(µ+σ)
(3.12)

and

In+1
i = In

i +R3(In
i−1 + In

i+1)+τσEn
i

1+2R3 +τ(µ+γ)
. (3.13)

Here,

R1 = dS
τ

h2 , R2 = dE
τ

h2 and R3 = dI
τ

h2 .

Positivity of the solution provides that

Sn
i ≥ 0, En

i ≥ 0, In
i ≥ 0 =⇒ Sn+1

i ≥ 0, En+1
i ≥ 0, In+1

i ≥ 0 .

So, the proposed FD scheme is unconditionally positivity preserving [4,7].

4. Stability

The stability range of all the schemes is determined by Von Neumann stability method.

The stability range of Forward Euler explicit scheme is R1 ≤ 2−τµ
4 , R2 ≤ 2−τ(µ+σ)

4 and
R3 ≤ 2−τ(µ+γ)

4 .

For the stability of Crank Nicolson FD scheme, we substitute ζ (t+∆t) eiωx, ζ (t) eiωx,
ζ (t) eiω(x−∆x), ζ (t) eiω(x+∆x), ζ (t+∆t) eiω(x−∆x) and ζ (t+∆t) eiω(x+∆x) for Sn+1

i , Sn
i , Sn

i−1, Sn
i+1,

Sn+1
i−1 and Sn+1

i+1 in (3.7) and after linearizing, we get

(1+R1)ζ (t+∆t) eiωx − R1

2
(
eiω(x−∆x) + eiω(x+∆x))ζ (t+∆t)

= (1−R1)ζ (t) eiωx + R1

2
(
eiω(x−∆x) + eiω(x+∆x))ζ (t)−τµζ (t) eiωx .

Dividing both sides by eiωx, we get

(1+R1)ζ (t+∆t)− R1

2
(
eiω(−∆x) + eiω(∆x))ζ (t+∆t)= (1−R1)ζ (t)+ R1

2
(
eiω(−∆x)+eiω(∆x))ζ (t)−τµζ (t) ,

(1+R1)ζ (t+∆t)− R1

2
(2cos(ω∆x) )ζ (t+∆t)= (1−R1)ζ (t)+ R1

2
(2cos(ω∆x) )ζ (t)−τµζ (t) ,

(1+R1)ζ (t+∆t)−R1
(
1−sin2(ω∆x/2)

)
ζ (t+∆t)= (1−R1)ζ (t)+R1

(
1−sin2(ω∆x/2)

)
ζ (t)−τµζ (t) ,(

1+2R1sin2(ω∆x/2)
)
ζ (t+∆t)= (

1−2R1sin2(ω∆x/2)−τµ )
ζ (t) ,∣∣∣∣ζ (t+∆t)

ζ (t)

∣∣∣∣=
∣∣∣∣∣
(
1−2R1sin2(ω∆x/2)−τµ )(

1+2R1sin2(ω∆x/2)
) ∣∣∣∣∣< 1.

The amplification factor is less than 1 in above case, which guarantees the unconditional
stability of Crank Nicolson implicit scheme. By adopting the same procedure for (3.8) and (3.9),
we can verify the unconditional stability of Crank Nicolson FD scheme for all cases.
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Now after applying Von Neumann method to proposed FD scheme (3.10) for (3.1) as discussed
in the Crank Nicolson FD scheme and then linearizing, we have

ζ (t+∆t) eiωx = ζ (t) eiωx+R1

(
eiω(x−∆x) + eiω(x+∆x)

)
ζ (t)−2R1ζ (t+∆t) eiωx−τµζ (t+∆t) eiωx .

Dividing both sides by eiωx, we get

ζ (t+∆t)= ζ (t)+R1

(
eiω(−∆x) + eiω(∆x)

)
ζ (t)−2R1ζ (t+∆t)−τµζ (t+∆t) ,

ζ (t+∆t)= ζ (t)+R1 (2cos(ω∆x) )ζ (t)−2R1ζ (t+∆t)−τµζ (t+∆t) ,(
1+2R1 +τµ

)
ζ (t+∆t)= (1+2R1cos(ω∆x) )ζ (t) ,∣∣∣∣ζ (t+∆t)

ζ (t)

∣∣∣∣= ∣∣∣∣1+2R1 −4R1sin2(ω∆x/2)
1+2R1 +τµ

∣∣∣∣≤ ∣∣∣∣ 1−2R1

1+2R1 +τµ
∣∣∣∣< 1 .

Similarly, we have,∣∣∣∣ζ (t+∆t)
ζ (t)

∣∣∣∣= ∣∣∣∣1+2R2 −4R2sin2(ω∆x/2)
1+2R2 +τ(µ+σ)

∣∣∣∣≤ ∣∣∣∣ 1−2R2

1+2R2 +τ(µ+σ)

∣∣∣∣< 1 ,∣∣∣∣ζ (t+∆t)
ζ (t)

∣∣∣∣= ∣∣∣∣1+2R3 −4R3sin2(ω∆x/2)
1+2R3 +τ(µ+γ)

∣∣∣∣≤ ∣∣∣∣ 1−2R3

1+2R3 +τ(µ+γ)

∣∣∣∣< 1 .

It is clear that proposed FD scheme is unconditionally stable [4,7].

5. Consistency of Proposed Scheme

To check the consistency of proposed FD scheme, we use Taylor series expansion of Sn+1
i , Sn

i+1
and Sn

i−1

Sn+1
i = Sn

i +τ
∂S
∂t

+ τ2

2!
∂2S
∂t2 + τ3

3!
∂3S
∂t3 + . . .

Sn
i+1 = Sn

i +h
∂S
∂x

+ h2

2!
∂2S
∂x2 + h3

3!
∂3S
∂x3 + . . .

Sn
i−1 = Sn

i −h
∂S
∂??

+ h2

2!
∂2S
∂x2 − h3

3!
∂3S
∂x3 + . . .

Proposed scheme for (3.1) is

Sn+1
i = Sn

i +R1
(
Sn

i−1 +Sn
i+1

)−2R1Sn+1
i +µτN −µτSn+1

i −τµβSn+1
i In

i .

Put the values of Sn+1
i ,Sn

i+1 and Sn
i−1 in above equation and after simplification we get,(

∂S
∂t

+ τ

2!
∂2S
∂t2 + τ2

3!
∂3S
∂t3 + . . .

)(
1+ dSτ

h2 +τµ+τβI i
n

)
= 2dS

(
1
2!
∂2S
∂x2 + h2

4!
∂4S
∂x4 + . . .

)
+Sn

i
(−µ−βI i

n
)+µN .

Put τ= h3 and h → 0, the above equation becomes (3.1) [4,7].

Taylor series expansion of En+1
i ,En

i+1 and En
i−1

En+1
i = En

i +τ
∂E
∂t

+ τ2

2!
∂2E
∂t2 + τ3

3!
∂3E
∂t3 + . . .
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En
i+1 = En

i +h
∂E
∂x

+ h2

2!
∂2E
∂x2 + h3

3!
∂3E
∂x3 + . . .

En
i−1 = En

i −h
∂E
∂x

+ h2

2!
∂2E
∂x2 − h3

3!
∂3E
∂x3 + . . .

Proposed scheme for (3.2) is

En+1
i = En

i +R2
(
En

i−1 +En
i+1

)+τβSn
i In

i −2R2En+1
i −τ(µ+σ)En

i .

Put the values of En+1
i , En

i+1 and En
i−1 in above equation and after simplification we get,(

∂E
∂t

+ τ

2!
∂2E
∂t2 + τ2

3!
∂3E
∂t3 + . . .

)(
1+2

dEτ

h2 +τ(
µ+σ))

= 2dE

(
1
2!
∂2E
∂x2 + h2

4!
∂4E
∂x4 + . . .

)
+βSn

i In
i +En

i
(−(µ+σ)

)
.

Put τ= h3 and h → 0, the above equation becomes (3.2).

Taylor series expansion of In+1
i , In

i+1 and In
i−1

In+1
i = In

i +τ
∂I
∂t

+ τ2

2!
∂2I
∂t2 + τ3

3!
∂3I
∂t3 + . . .

In
i+1 = In

i +h
∂I
∂x

+ h2

2!
∂2I
∂x2 + h3

3!
∂3I
∂x3 + . . .

In
i−1 = In

i −h
∂I
∂x

+ h2

2!
∂2I
∂x2 − h3

3!
∂3I
∂x3 + . . .

Proposed scheme for (3.3) is

In+1
i = In

i +R3
(
In

i−1 + In
i+1

)−2R3In+1
i −τ(

µ+γ)
In

i +τσEn
i .

Put the values of In+1
i , In

i+1 and In
i−1 in above equation and after simplification we get,(

∂I
∂t

+ τ

2!
∂2I
∂t2 + τ2

3!
∂3I
??t3 + . . .

)(
1+2

dIτ

h2 +τ(
µ+ν))

= 2dI

(
1
2!
∂2I
∂x2 + h2

4!
∂4I
∂x4 + . . .

)
+ In

i
(− (µ+ν)

)+σEn
i .

Put τ= h3 and h → 0, the above equation becomes (3.3).

We see that forward Euler finite difference scheme is

(i) Explicit in nature, which is easy to solve and take less CPU time.

(ii) It is conditionally stable.

(iii) It could not preserve positivity property as it has negative term.

Crank Nicolson scheme is

(i) Implicit in nature which has complex computation and take more CPU time than explicit
scheme.

(ii) It is unconditionally stable.

(iii) It also could not preserve positivity property.

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 315–326, 2018



322 Numerical Modeling of SEIR Measles Dynamics with Diffusion: N. Ahmed et al.

The Proposed FD scheme is

(i) Explicit in nature.

(ii) It is unconditionally stable.

(iii) It preserves positivity property.

Next simulations of a test problem are presented to verify the results of all the schemes.

6. Numerical Experiment

The following values of parameters [9] are used in Numerical Experiments.

Table 1. Parameter values of Measles Model

Parameters N µ σ γ

5×107 year−1 0.02 45.6 year−1 73 year−1

Disease Free Equilibrium (So,Eo, Io)= (N,0,0) β= 0.1×10−5

Endemic Equilibrium (Se,Ee, Ie)= (2.435×107,1.125×104, 7022.67), β= 0.3×10−5

6.1 Experiment 1
In the first experiment, the following initial condition is supposed

S (x,0)=
{

12500000x, 0≤ x < 0.5
12500000(1− x) , 0.5≤ x ≤ 1

, E (x,0)=
{

50000x, 0≤ x < 0.5
50000(1− x) , 0.5≤ x ≤ 1

I (x,0)=
{

30000x, 0≤ x < 0.5
30000(1− x) , 0.5≤ x ≤ 1

Figure 1 reveals that maximum value of susceptible and infected class is concentrated at
the middle of domain [0,1] and the value decreases linearly to zero at the boundaries x = 0 and
x = 1.

Figure 1. The initial distribution of the value of susceptible, exposed and infected class

6.2 Experiment 2
For this experiment, we take S0 = 12500000, E0 = 50000, I0 = 30000.
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6.2.1 Disease Free Equilibrium

Now we express the various schemes graphically which are already discussed.

Figure 2. Mesh graphs of forward Euler FD scheme at DFE point

Figure 3. Mesh graphs of Crank Nicolson FD scheme at DFE point

Figures 2 and 3 illustrate the graphs using forward Euler scheme and Crank Nicolson
scheme. The graphs reflect that both the schemes failed to preserve positivity property.

Figure 4. Mesh graphs of proposed FD scheme at DFE point

Figure 4 highlights the graphs using proposed FD scheme. These graphs show the disease
free equilibrium. Graphs clearly show that the proposed FD scheme converges to disease free
equilibrium points (N,0,0) and preserves positivity property.
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6.2.2 Endemic Equilibrium

Next simulation results of EE for all the schemes are presented.

Figure 5. Mesh graphs of forward Euler FD scheme at EE point

Figure 6. Mesh graphs of Crank Nicolson FD scheme at EE point

Figures 5 and 6 show that forward Euler FD scheme and Crank Nicolson FD scheme produce
nonphysical oscillations and hence become unstable.

Figure 7. Mesh graphs of proposed FD scheme at EE point

Communications in Mathematics and Applications, Vol. 9, No. 3, pp. 315–326, 2018



Numerical Modeling of SEIR Measles Dynamics with Diffusion: N. Ahmed et al. 325

Figures 7 reflects the graphs of endemic equilibrium using proposed FD scheme.
Graphs clearly verify that proposed FD scheme converges to endemic equilibrium point
(SEE,EEE, IEE)= (2.435×107,1.125×104,7022.67).

7. Conclusion
In this work, SEIR epidemic model with diffusion is solved numerically by forward Euler FD
scheme, Crank Nicolson FD scheme and proposed FD scheme. The consistency and unconditional
stability of proposed scheme has been proved analytically. Simulations are presented. Graphs
show that both existing schemes produce negative values, show unstable behavior, converge
to false steady states and diverge while proposed finite difference scheme is unconditionally
dynamically consistent with positivity property and unconditionally convergent to true steady
states.
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