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1. Introduction

In this paper, we consider the inverse problem of finding u(x, t) and k(x) in the following problem

Dα
t u = (k(x)ux)x, 0< x < l, 0≤ t ≤ T , (1)

u(x,0)=ϕ1(x), 0< x < l , (2)

k(0)ux(0, t)=µ(t), 0≤ t ≤ T , (3)



230 Inverse Problem for Determination of An Unknown Coefficient in the TFDE . . . : A. Demir and M.A. Bayrak

under the additional condition

Dα
t u(x,0)=ϕ2(x), 0< x < l , (4)

where α ∈ (0,1) is the fractional order, Dα
t u denotes the αth order of Caputo fractional derivative

with respect to t.

Physically speaking, this model describes the diffusion procedure with memory. The
coefficient k(x) represents a diffusion coefficient. In various problems in science, determination
of the coefficients in the diffusion equation requires some additional information. These kinds
of problems are called as inverse problems [7,8,15,17,23,28].

Recently, fractional calculus has been considerable popularity. Indeed, fractional calculus
plays a central role in numerous applications in nanotechnology, control theory, viscoplasticity
flow, biology, signal and image processing and so on fractional calculus [6,9,16,18,19,24,26].
The mathematical and numerical analysis of the direct problem of the time-fractional diffusion
has gained much attention [10,20,21,25,27]. However, the investigation of the inverse problems
for the fractional diffusion equation remain rarely.

In the present work, by making use of residual power series (RPS) technique, the coefficients
of u(x, t) and k(x) are determined [1–5,11–14]. The advantage of RPS technique is that it can
be employed for inverse problems without linearization, perturbation, or discretization.

2. Preliminaries
In this section, the main definitions and various features of the fractional calculus theory are
given.

Definition 1. The Riemann-Liouville time fractional integral of order α of u(x, t) is described
as

Iαt u(x, t)=
{ 1
Γ(α)

∫ t
s (t−ξ)α−1u(x,ξ)dξ, α> 0, x ∈ I, t > ξ> s ≥ 0

u(x, t), α= 0 .

Definition 2. The Caputo’s time fractional derivative of order α of u(x, t) is defined as

Dα
t u(x, t)=


1

Γ(m−α)
∫ t

s (t−ξ)m−α−1 ∂mu(x,ξ)
∂ξm dξ, 0≤ m−1<α< m, t > ξ> s ≥ 0, x ∈ I

∂mu(x,t)
∂tm , α= m ∈ N .

Definition 3. If m−1<α≤ m, m ∈ N , then

(i) Dα
t Iαt u(x, t)= u(x, t),

(ii) Iαt Dα
t u(x, t)= u(x, t)−

n−1∑
i=0

∂ui(x,s+)
∂ti

ti

i! .

For more information on fractional derivatives, see [16, 18, 26]. Some essential results of
RPSM are given as follows [14]:

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 229–237, 2018



Inverse Problem for Determination of An Unknown Coefficient in the TFDE . . . : A. Demir and M.A. Bayrak 231

Definition 4. A power series expansion of the form
∞∑

k=0
fk(x)(t− t0)kα, 0≤ m−1<α≤ m, t ≥ t0

is called multiple fractional power series about t = t0.

Definition 5. The two parameter Mittag-Leffler function Eα,β(z) is defined by [16,26]

Eα,β(z)=
∞∑

k=0

zk

Γ(kα+β)
, z ∈ C .

The Mittag-Leffler function Eα,β(z) generalizes the exponential function ez in that E1,1(z)=
ez . It is an entire function in z with order 1

α
and type one [16].

3. RPSM for Time Fractional Heat Equation

In order to get the RPS solution, the following principal steps are applied:

Step 1. The fractional power series expansion for the solutions of eqns. (1)-(4) about t = 0 is
established in the following form:

u(x, t)=
∞∑

k=0
fk(x)

tkα

Γ(kα+1)
, 0<α≤ 1, x ∈ I, 0≤ t < R . (5)

By applying RPS technique, the mth truncated series of u(x, t), um(x, t) is obtained in the
following form:

um(x, t)=
m∑

k=0
fk(x)

tkα

Γ(kα+1)
, 0<α≤ 1, x ∈ I, 0≤ t < R . (6)

The 0th RPS approximate solution is assumed to be the initial condition:

u0(x, t)= f0(x)= u(x,0)=ϕ1(x) . (7)

Hence, we have

um(x, t)=ϕ1(x)+
m∑

k=1
fk(x)

tkα

Γ(kα+1)
, 0<α≤ 1, x ∈ I, 0≤ t, m = 1,2,3, . . . . (8)

When determined fk(x), k = 1,2,3, . . . ,m, the mth RPS approximate solution will be constructed.

Step 2. Let the residual function for eqns. (1)-(4) be defined in the following form:

Res(x, t)= Dα
t u− (k(x)ux)x . (9)

Hence, the mth residual function has the following form

Resm(x, t)= Dα
t um − (k(x)(um)x)x . (10)

From [16,18,26], some results of Resm(x, t) which satisfy the following expressions Res(x, t)= 0,
lim

m→∞Resm(x, t)=Res(x, t) for each x ∈ I and t ≥ 0 and

D(i)α
t Res(x,0)= D(i)α

t Resm(x,0)= 0, i = 0,1,2, . . . ,m . (11)
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Step 3. Replacing in eqn. (10) by um(x, t) and take in the fractional derivative of Resm(x, t),
m = 1,2,3, . . . at t = 0 with eqn. (11), we obtain the following algebraic system of equations:

D(m−1)α
t Resm(x,0)= 0, 0<α≤ 1, m = 1,2,3, . . . (12)

Step 4. The coefficients fk(x), k = 1,2,3, . . . ,m are determined by solving the system (12). Thus,
um(x, t) is constructed.

In the next step, illustrating the above processes, um(x, t) are obtained for m = 1,2,3.

For m= 1, substituting

u1(x, t)=ϕ1(x)+ f1(x)
tα

Γ(1+α)
(13)

in to

Res1(x, t)= Dα
t u1(x, t)− (k(x)(u1)x)x (14)

we obtained the following:

Res1(x, t)= f1(x)−k′(x)
[
ϕ′

1(x)+ f ′1(x)
tα

Γ(1+α)

]
−k(x)

[
ϕ′′

1(x)+ f ′′1 (x)
tα)

Γ(1+α
]

. (15)

Hence, from eqn. (12) and (15), we have f1(x)= k′(x)ϕ′
1(x)+k(x)ϕ′′

1(x).

From

Dα
t u(x,0)=ϕ2(x) (16)

and equating we have

k′(x)+ ϕ′′
1(x)

ϕ′
1(x)

k(x)= ϕ2(x)
ϕ′

1(x)
. (17)

Then we solve the obtained ordinary differential equation, we obtain

k(x)=
[∫

ϕ2(x)dx+C
]

ϕ′
1(x)

,

where the constant C is obtained by using the boundary condition of the problem, and

f1(x)=ϕ2(x) .

Similarly, for m= 2, substituting

u2(x, t)=ϕ1(x)+ f1(x)
tα

Γ(1+α)
+ f2(x)

t2α

Γ(1+2α)
(18)

into Res2(x, t), we obtained:

Res2(x, t)=ϕ2(x)+ f2(x)
tα

Γ(1+α)
−k′(x)

[
ϕ′

1(x)+ f ′1(x)
tα

Γ(1+α)
+ f ′2(x)

t2α

Γ(1+2α)

]
−k(x)

[
ϕ′′

1(x)+ f ′′1 (x)
tα

Γ(1+α)
+ f ′′2 (x)

t2α

Γ(1+2α)

]
. (19)

From eqn. (12) and eqn. (19), we have

f2(x)= k′(x) f ′1(x)+k(x) f ′′1 (x).
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For m= 3, substituting,

u3(x, t)=ϕ1(x)+ f1(x)
tα

Γ(1+α)
+ f2(x)

t2α

Γ(1+2α)
+ f3(x)

t3α

Γ(1+3α)
(20)

into Res3(x, t), now, we have solved the equation D2α
t Res3(x,0) = 0, the coefficient f3(x) is

obtained in the following form

f3(x)= k′(x) f ′2(x)+k(x) f ′′2 (x).

Hence, u3(x, t) can be written as follows:

u3(x, t)=ϕ1(x)+ϕ2(x)
tα

Γ(1+α)
+ (k′(x) f ′1(x)+k(x) f ′′1 (x))

t2α

Γ(1+2α)

+ (k′(x) f ′2(x)+k(x) f ′′2 (x))
t3α

Γ(1+3α)
. (21)

Then, by the recurrence formula, we obtain

fk(x)= k′(x) f ′k−1(x)+k(x) f ′′k−1(x), k = 2,3, . . . .

4. Illustrative Examples

Example 1. Consider the following time fractional diffusion problem

Dα
t u = (k(x)ux)x, 0< x < l, 0≤ t ≤ T , (22)

u(x,0)= 1+exp(−x), 0< x < l , (23)

k(0)ux(0, t)=−exp(t), 0≤ t ≤ T (24)

and the additional condition

Dα
t u(x,0)= 1+exp(−x), 0< x < l . (25)

According to RPSM, starting with the initial guess approximation, the series solution of eqn. (22)
can be written of the form

u1(x, t)= (1+exp(−x))+ f1(x)
tα

Γ(1+α)
. (26)

Applying the Caputo derivative according to t in eqn. (26) and equating to eqn. (22), we have
k(x) = 1− xe−x +Cex. In order to determine the constant C in k(x) the boundary condition is
used and C = 0 is found. Hence, we obtain

k(x)= 1− xe−x

and

f1(x)= 1+exp(−x) .

Substituting k(x) into eqn. (26), u2(x, t) can be expressed as follows:

u2(x, t)= (1+exp(−x))+ (1+exp(−x))
tα

Γ(1+α)
+ f2(x)

t2α

Γ(1+2α)
. (27)

We apply repeating process as in the former application

fk(x)= (1+exp(−x)), k = 2,3,4, . . . .
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Therefore, the RPS approximate solutions are

u(x, t)= (1+exp(−x))+ (1+exp(−x))
tα

Γ(1+α)
+ (1+exp(−x))

t2α

Γ(1+2α)
+ . . . . (28)

To verify the efficiency and accuracy of the RPS technique, for several values of α, x and t, the
absolute error is determined by taking the exact solution into account and they are listed in
Table 1.

Table 1. Approximate third order solution of Example 1 for different value of α and absolute error at
α= 1

x t α= 0.75 α= 0.9 α= 1 Exact Absolute error

0.25 0.3 2.6678 2.5010 2.4005 2.4011 6×10−4

0.6 3.5726 3.3734 3.2303 3.2412 0.0109

0.9 4.7616 4.5143 4.3163 4.3751 0.0588

0.5 0.3 2.4094 2.2587 2.1680 2.1686 6×10−4

0.6 3.2266 3.0467 2.9175 2.9273 0.0098

0.9 4.3005 4.0771 3.8982 3.9514 0.0532

0.75 0.3 2.2082 2.0701 1.9870 1.9875 5×10−4

0.6 2.9571 2.7922 2.6738 2.6828 0.0090

0.9 3.9413 3.7366 3.5727 3.6214 0.0487

1 0.3 2.0515 1.9232 1.8460 1.8464 4×10−4

0.6 2.7473 2.5941 2.4841 2.4924 0.0083

0.9 3.6616 3.4715 3.3192 3.3644 0.0452

Example 2. Consider the following time fractional diffusion problem

Dα
t u = (k(x)ux)x, 0< x < l, 0≤ t ≤ T , (29)

u(x,0)= (x+1)2, 0< x < l , (30)

k(0)ux(0, t)= 2
3

e2t, 0≤ t ≤ T (31)

and the additional condition

Dα
t u(x,0)= 2(x+1)2, 0< x < l . (32)

According to RPSM, starting with the initial guess approximation, the series solution of eqn. (29)
can be written of the form

u1(x, t)= (x+1)2 + f1(x)
tα

Γ(1+α)
. (33)

Applying the Caputo derivative according to t in eq. (33) and equating to eq. (29), we have
k(x)= (x+1)2

3 + C
x+1 . In order to determine the constant C in k(x) the boundary condition is used

and C = 0 is found. Hence, we obtain

k(x)= (x+1)2

3
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and

f1(x)= 2(x+1)2 .

Substituting k(x) into eq. (33), u2(x, t) can be written as follows:

u2(x, t)= (x+1)2 +2(x+1)2 tα

Γ(1+α)
+ f2(x)

t2α

Γ(1+2α)
. (34)

We apply repeating process as in the former application

fk(x)= 2k(x+1)2, k = 1,2,3, . . . .

Therefore, the RPS approximate solutions are

u(x, t)= (x+1)2 +2(x+1)2 tα

Γ(1+α)
+4(x+1)2 t2α

Γ(1+2α)
+ . . . . (35)

To verify the efficiency and accuracy of the RPS technique, for several values of α, x and t, the
absolute error is determined by taking the exact solution into account and they are listed in
Table 2.

Table 2. Approximate third order solution of Example 2 for different value of α and absolute error at
α= 1

x t α= 0.75 α= 0.9 α= 1 Exact Absolute error

0.25 0.3 3.3575 3.0368 2.8375 2.8471 0.0096

0.6 5.9443 5.4047 5.0125 5.1877 0.1752

0.9 10.2415 9.2019 8.4250 9.4526 1.0276

0.5 0.3 4.8347 4.3730 4.0860 4.0998 0.0138

0.6 8.5598 7.7828 7.2180 7.4703 0.2523

0.9 14.7478 13.2508 12.1320 13.6117 1.4797

0.75 0.3 6.5806 5.9521 5.5615 5.5802 0.0187

0.6 11.6508 10.5933 9.8245 10.1679 0.3434

0.9 20.0733 18.0358 16.5130 18.5270 2.0140

1 0.3 8.5951 7.7742 7.2640 7.2885 0.0245

0.6 15.2174 13.8361 12.8320 13.2805 0.4485

0.9 26.2182 23.5569 21.5680 24.1986 2.6306

5. Conclusion
The fundamental aim of this study is to demonstrate the feasibility of the RPSM for solving
time-fractional inverse problems in the Caputo sense. The above results and all of the discussed
examples reveal that the goal has been achieved successfully with Neumann boundary condition
since Dirichlet boundary condition makes inverse problems ill-posed. As a result RPSM can be
utilized as a significant method to get analytical solutions of time-fractional inverse problems
arising in different branches of science.
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