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1. Introduction
A positive sequence (bn) is said to be almost increasing if there exists a positive increasing
sequence (cn) and two positive constants K and L such that K cn ≤ bn ≤ Lcn (see [1]). Let

∑
an

be a given infinite series with the partial sums (sn). Let (pn) be a sequence of positive numbers
such that

Pn =
n∑

v=0
pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1.1)

The sequence-to-sequence transformation

zn = 1
Pn

n∑
v=0

pvsv (1.2)

defines the sequence (zn) of the Riesz mean of the sequence (sn), generated by the sequence of
coefficients (pn) (see [9]).
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Let (ϕn) be a sequence of positive real numbers. The series
∑

an is said to be summable
ϕ−|N̄, pn;δ|k, k ≥ 1 and δ≥ 0, if (see [14])

∞∑
n=1

ϕδk+k−1
n |zn − zn−1|k <∞. (1.3)

If we take ϕn = Pn
pn

, then ϕ−|N̄, pn;δ|k summability reduces to |N̄, pn;δ|k summability (see [5]).

If we take δ= 0 and ϕn = Pn
pn

, then ϕ−|N̄, pn;δ|k summability reduces to |N̄, pn|k summability
(see [2]).

2. Known Result
In [8], Bor has obtained the following theorem.

Theorem 2.1. Let (Xn) be an almost increasing sequence and let there be sequences (βn) and
(λn) such that

|∆λn| ≤βn, (2.1)

βn → 0 as n →∞, (2.2)
∞∑

n=1
n|∆βn|Xn <∞, (2.3)

|λn|Xn =O(1) (2.4)

and
n∑

v=1

|tv|k
v

=O(Xn) as n →∞, (2.5)

where (tn) is the n-th (C,1) mean of the sequence (nan). Suppose further, the sequence (pn) is
such that

Pn =O(npn), (2.6)

Pn∆pn =O(pn pn+1), (2.7)

then the series
∞∑

n=1
an

Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.

3. Main Result
The purpose of this paper is to generalize above theorem for ϕ−|N̄, pn;δ|k summability method
in the following form. One can find more applications of generalized absolute summability of
infinite series (see [6], [7], [11], [12], [13], [15], [16]).

Theorem 3.1. Let (Xn) be an almost increasing sequence and ϕn pn = O(Pn). If conditions
(2.1)-(2.4), (2.6)-(2.7) of Theorem 2.1 and

n∑
v=1

ϕδk
v

1
v
|tv|k =O(Xn) as n →∞, (3.1)
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m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

=O
(
ϕδk

v
1

Pv

)
as m →∞, (3.2)

are satisfied, then the series
∞∑

n=1
an

Pnλn
npn

is summable ϕ−|N̄, pn;δ|k, k ≥ 1 and 0≤ δ< 1/k.

When we take δ= 0 and ϕn = Pn
pn

in Theorem 3.1, then we get Theorem 2.1. In this case, the
condition (3.1) reduces to the condition (2.5). Also, the condition (3.2) is automatically satisfied.

Remark. It should be noted that under the conditions on the sequence (λn), we have that (λn)
is bounded and ∆λn =O(1/n) (see [3]).

Lemma 3.2 ([10]). If (Xn) is an almost increasing sequence, then under the conditions (2.2)-(2.3),
we have

nXnβn =O(1) as n →∞, (3.3)
∞∑

n=1
βnXn <∞. (3.4)

Lemma 3.3 ([4]). If conditions (2.6) and (2.7) are satisfied, then we have

∆

(
Pn

n2 pn

)
=O

(
1
n2

)
. (3.5)

4. Proof of Theorem 3.1
Let (Mn) be the sequence of (N̄, pn) mean of the series

∑ anPnλn
npn

. Then, we have

Mn = 1
Pn

n∑
v=1

pv

v∑
r=1

arPrλr

rpr
= 1

Pn

n∑
v=1

(Pn −Pv−1)
avPvλv

vpv
.

Then, for n ≥ 1, we get

Mn −Mn−1 = pn

PnPn−1

n∑
v=1

Pv−1Pvavλv

vpv
= pn

PnPn−1

n∑
v=1

Pv−1Pvavvλv

v2 pv
.

From Abel’s transformation, we obtain

Mn −Mn−1 = pn

PnPn−1

n−1∑
v=1

∆

(
Pv−1Pvλv

v2 pv

) v∑
r=1

rar + λn

n2

n∑
v=1

vav

= (n+1)tnλn

n2 + pn

PnPn−1

n−1∑
v=1

Pv

pv
(v+1)tv pv

λv

v2

+ pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v+1)
tv

v2 pv

− pn

PnPn−1

n−1∑
v=1

Pvλv+1(v+1)tv∆

(
Pv

v2 pv

)
= Mn,1 +Mn,2 +Mn,3 +Mn,4 .

To prove Theorem 3.1, we have to show that
∞∑

n=1
ϕδk+k−1

n |Mn,r|k <∞, for r = 1,2,3,4.
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First, from Abel’s formula, we have
m∑

n=1
ϕδk+k−1

n |Mn,1|k =
m∑

n=1
ϕδk+k−1

n

∣∣∣∣ (n+1)tnλn

n2

∣∣∣∣k

=O(1)
m∑

n=1
ϕδk

n
1
n
|λn||tn|k

=O(1)
m−1∑
n=1

∆|λn|
n∑

r=1
ϕδk

r
1
r
|tr|k +O(1)|λm|

m∑
n=1

ϕδk
n

1
n
|tn|k

=O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

=O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm

=O(1) as m →∞,

by virtue of (2.1), (2.4), (2.6), (3.1) and (3.4).

From Hölder’s inequality, as in Mn,1, we have

m+1∑
n=2

ϕδk+k−1
n |Mn,2|k =

m+1∑
n=2

ϕδk+k−1
n

∣∣∣∣∣ pn

PnPn−1

n−1∑
v=1

Pv

pv
(v+1)tv pv

λv

v2

∣∣∣∣∣
k

=O(1)
m+1∑
n=2

ϕδk−1
n

(
ϕn pn

Pn

)k 1
Pk

n−1

(
n−1∑
v=1

Pv

pv
pv|tv|

|λv|
v

)k

=O(1)
m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

(
Pv

pv

)k
pv|tv|k

|λv|k
vk

(
1

Pn−1

n−1∑
v=1

pv

)k−1

=O(1)
m∑

v=1

(
Pv

pv

)k
pv|tv|k |λv|k−1 |λv| 1

vk

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

=O(1)
m∑

v=1
ϕδk

v |λv| |tv|k
v

=O(1) as m →∞,

by (2.1), (2.4), (2.6), (3.1), (3.2) and (3.4).

Now, using ∆λn =O(1/n), we get

m+1∑
n=2

ϕδk+k−1
n |Mn,3|k =

m+1∑
n=2

ϕδk+k−1
n

∣∣∣∣∣ pn

PnPn−1

n−1∑
v=1

PvPv∆λv(v+1)
tv

v2 pv

∣∣∣∣∣
k

=O(1)
m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

(
Pv

pv

)k
pv |∆λv|k |tv|k

(
1

Pn−1

n−1∑
v=1

pv

)k−1

=O(1)
m∑

v=1

(
Pv

pv

)k
pv |∆λv|k−1 |∆λv| |tv|k

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

=O(1)
m∑

v=1
ϕδk

v vβv
|tv|k

v
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=O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1
ϕδk

r
1
r
|tr|k +O(1)mβm

m∑
v=1

ϕδk
v

1
v
|tv|k

=O(1)
m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

=O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m →∞,

by using (2.1), (2.3), (2.6), (3.1), (3.2), (3.3) and (3.4).

Finally, since ∆
( Pv

v2 pv

)=O
( 1

v2

)
, as in Mn,1, we have

m+1∑
n=2

ϕδk+k−1
n |Mn,4|k =

m+1∑
n=2

ϕδk+k−1
n

∣∣∣∣∣− pn

PnPn−1

n−1∑
v=1

Pvλv+1(v+1)tv∆

(
Pv

v2 pv

)∣∣∣∣∣
k

=O(1)
m+1∑
n=2

ϕδk−1
n

(
ϕn pn

Pn

)k 1
Pk

n−1

(
n−1∑
v=1

Pv

pv
pv|tv|

|λv+1|
v

)k

=O(1)
m+1∑
n=2

ϕδk−1
n

1
Pn−1

n−1∑
v=1

(
Pv

pv

)k
pv|tv|k

|λv+1|k
vk

(
1

Pn−1

n−1∑
v=1

pv

)k−1

=O(1)
m∑

v=1

(
Pv

pv

)k
pv|tv|k |λv+1|k−1 |λv+1| 1

vk

m+1∑
n=v+1

ϕδk−1
n

1
Pn−1

=O(1)
m∑

v=1
ϕδk

v |λv+1| |tv|k
v

=O(1) as m →∞,

by (2.1), (2.4), (2.6), (3.1), (3.2) and (3.4).

Thus, the proof of Theorem 3.1 is completed.

When we take δ= 0, ϕn = Pn
pn

and (Xn) as a positive non-decreasing sequence, then we get a
theorem dealing with |N̄, pn|k summability (see [4]).

5. Conclusion
In this study, generalized absolute summability of infinite series has been studied. A theorem
concerning absolute summability factors, which generalizes a known theorem dealing with
the |N̄, pn|k summability factors of infinite series, has been proved by using almost increasing
sequences.
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