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1. Introduction
Solving numerical integration is an important question in scientific calculations and engineering.
Gregory’s method is among the very first quadrature formulas ever described in the literature,
dating back to James Gregory (1638-1675) ( [2], [3], [6], [7]). It seems to have been highly
regarded for centuries.

Consider the Gregory integration formula:∫ n

0
f (x)dx =

n∑
k=0

f (k)+ ∑
k≥0

αk

k!
(∆k

1 f (0)+∆k
−1 f (n)) , (1.1)



156 Parameterized Gregory Formula: N. Khelil and L. Djerou

where ∆1 is the forward difference operator with step size 1. This formula has a sense so n ≥ 1,
In the contrary case an appropriate variable change will permit us to do the integral without no
difficulty.

Our work is based on the observation that the spacing in (1.1) can be made arbitrary. This
results in a formula of the form∫ n

0
f (x)dx =

n∑
k=0

f (k)+ ∑
k≥0

αk(h1,h2, . . . ,hk)
k!

(
∆k

hk
f (0)+∆k

−hk
f (n)

)
, (1.2)

where ∆h is the forward difference operator with step size h. To justify the formula (1.2) we
shall use the umbral methods developed by Rota and his school [8]- [11], instead of classical
generating function technique. Our goal is to find parameters hk minimizing the absolute values
of the coefficients αk(h1,h2, . . . ,hk) from certain row k.

This paper is organized as follows: after introduction in Section 1, we recall some basic
definitions related to this article in Section 2. And we discuss the theorem of expansion a
formal series by a series delta. In Section 2.2 we will prove, if pk(x) is associated sequence for

any f (t) ∈ F , then for any h(t) ∈ F is written, h(t) =
∞∑

k=0

〈h(t)|pk(x)〉
k! fk(t), this result generalizes,

h(t)=
∞∑

k=0

〈h(t)|pk(x)〉
k! f k(t). Finally, an example is given to illustrated our theoretical result.

Section 3 the most important part of our work, it is to propose and justify a generalization
of the Gregory formula. In Section 4, the proposed algorithm is described, tested on various
functions reputed badely integrate. Finally, conclusions are presented in Section 5.

2. Preliminary

This section reviews some of the basic definitions related to this article; we start by discussing
what the algebra of formel power series, and what linear functionals are also, we discuss the
theorem of expansion a formal series by a series delta. Finally, we give an example of application
of this theorem (see [1,5,8–13]).

2.1 The Algebra of Formal Power Series

We note F the K -Algebra (K = R or C) of the formal series

f (t)=
∞∑

n=0
αktk. (2.1)

Its support is the set of indices k such that αk 6= 0. The smallest element of this set is called the
order of f (t). The subalgebra of F , of the polynomials of one undeterminate, will be noted P .
The degree deg(p(x)) of a polynomial p(x) is the largest k such that αk 6= 0.

Let P∗ be the vector space of all linear functional on P.

Therefore, the formal power series f (t)=
∞∑

k=0

αk
k! tk defines a linear functional on P by setting

〈 f (t) | xn〉 =αn , for all n ≥ 0. (2.2)
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In particular

〈tk | xn〉 = n!δn,k =
{

n!, n = k
0, n 6= k.

Actually, any linear functional L in P∗ has the form (2.1). If

fL(t)=
∞∑

n=0

〈L | xk〉
k!

tk . (2.3)

then from (2.2) we get 〈 fL | xn〉 = 〈L | xn〉 and so linear functionals L = fL.

The application L 7→ fL(t) is a vector space isomorphism from P∗ onto F [9].

As example, the functional f (t) that satisfies

〈 f (t) | p(x)〉 =
∫ n

0
p(u)du.

for all polynomial p(x) can be determined as:

f (t)=
∞∑

k=0

〈 f (t) | xk〉
k!

tk =
∞∑

k=0

∫ y
0 ukdu

k!
tk =

∞∑
k=0

yk+1

(k+1)!
tk = ent −1

t
.

So

f (t)= ent −1
t

.

2.2 Expansion a Formal Series by a Series Delta

Following Roman [9] we will prove, if pk(x) is associated sequence for any f (t) ∈ F , then for any

h(t) ∈ F Is written, h(t)=
∞∑

k=0

〈h(t)|pk(x)〉
k! fk(t), this result generalizes, h(t)=

∞∑
k=0

〈h(t)|pk(x)〉
k! f k(t).

Proposition 2.1. If f (t) ∈F, then

f (t)=
∞∑

k=0

〈 f (t) | xk〉
k!

tk.

We have〈 ∞∑
k=0

〈 f (t) | xk〉
k!

tk
∣∣∣xn

〉
=

∞∑
k=0

〈 f (t) | xk〉
k!

〈tk | xn〉 = 〈 f (t) | xn〉.

A sequence gk(t) for which 0(gk(t))= k forms pseudobasis for F. In other words, for each series
f (t) there is a unique sequence of constants αk for which

f (t)=
∞∑

k=0
αk gk(t).

In particular, the powers of delta series form a pseudobasis for F.

Proposition 2.2. If p(x) ∈P, then

p(x)=
∞∑

k=0

〈tk | p(x)〉
k!

xk .
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We have〈 ∞∑
k=0

〈tk | p(x)〉
k!

xk
∣∣∣ tn

〉
=

∞∑
k=0

〈tk | p(x)〉
k!

〈xk | tn〉

=
∞∑

k=0

〈tk | xn〉
k!

〈xk | tn〉

= 〈xn | tn〉, n ≥ 0

= 〈p(x) | tn〉 .

Proposition 2.3. If 0( fk(t))= k, for all k ≥ 0, then〈 ∞∑
k=0

αk fk(t)
∣∣∣ p(x)

〉
=

∞∑
k=0

αk〈 fk(t) | p(x)〉,

for all p(x) in P.

Suppose that deg (p(x))= d, then〈 ∞∑
k=0

αk fk(t)
∣∣∣ p(x)

〉
=

〈
d∑

k=0
αk fk(t)

∣∣∣ p(x)

〉
+

〈 ∞∑
k=d+1

αk fk(t)
∣∣∣ p(x)

〉

=
〈

d∑
k=0

αk fk(t)
∣∣∣ p(x)

〉

=
d∑

k=0
αk〈 fk(t) | p(x)〉

=
∞∑

k=0
αk〈 fk(t) | p(x)〉.

Proposition 2.4. If 0( fk(t))= k (if fk(t) is a delta series), for all k ≥ 0 and if

〈 fk(t) | p(x)〉 = 〈 fk(t) | q(x)〉,
for all k, then p(x)= q(x).

Since the sequence fk(t), forms a pseudobasis for F, for all n ≥ 0 there exist constants αn,k

for which

tn =
∞∑

k=0
αn,k fk(t).

Thus

〈tn | p(x)〉 =
〈 ∞∑

k=0
αn,k fk(t)

∣∣∣ p(x)

〉

=
∞∑

k=0
αn,k〈 fk(t) | p(x)〉

=
∞∑

k=0
αn,k〈 fk(t) | q(x)〉
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=
〈 ∞∑

k=0
αn,k fk(t)

∣∣∣ q(x)

〉
= 〈tn | q(x)〉

and so Proposition 2.2 shows that

p(x)=
∞∑

k=0

〈tk | p(x)〉
k!

xk

=
∞∑

k=0

〈tk | q(x)〉
k!

xk

= q(x).

Proposition 2.5. If deg(pk(x))= k, for all k ≥ 0 and if

〈 f (t) | pk(x)〉 = 〈g(t) | pk(x〉,
for all k, then f (t)= g(t).

For each n ≥ 0 there exist constants αn,k for which

xn =
N∑

k=0
αn,k pk(x).

Thus

〈 f (t) | xn〉 =
N∑

k=0
αn,k〈 f (t) | pk(x)〉

=
N∑

k=0
αn,k〈g(t) | pk(x)〉

= 〈g(t) | xn〉.
and so Proposition 2.1 shows that f (t)= g(t).

By a sequence pn(x) in P we shall always imply that deg(pn(x))= n.

Theorem 2.1. Let fk(t) be a delta series. Then exists a unique sequence pn(x) of polynomials
satisfying the orthogonality conditions

〈 fk(t) | pn(x)〉 = n!δn,k, (2.4)

for all n,k ≥ 0.

The uniqueness follows from Proposition 2.5.

If 〈 fk(t) | pn(x)〉 = 〈 fk(t) | qn(x)〉 then pn(x)= qn(x).

For the existence, suppose

pn(x)=
n∑

j=0
αn, jx j,
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where αn,n 6= 0, and

fk(t)=
∞∑

i=k
βk,i ti,

where βn,n 6= 0, then (2.4) becomes

n!δn,k =
〈 ∞∑

i=k
βk,i ti

∣∣∣ n∑
j=0

αn, jx j

〉
=

∞∑
i=k

n∑
j=0

βk,iαn, j〈ti | x j〉,

since 〈ti | x j〉 = i! for i = j, therefore,

n!δn,k =
n∑

i=k
αn, j i! .

Taking k = n, we obtain n!=βn,nαn,nn!. Therefore,

αn,n = 1
βn,n

.

Taking k = n−1,

n!δn,n−1 =
n∑

i=n−1
βn−1,iαn,i i!

0=βn−1,n−1αn,n−1 (n−1)!+βn−1,nαn,n(n)!

so,

αn,n−1 =−βn−1,nαn,n

βn−1,n−1

By successively taking k = n,n−1, . . . ,0. We obtain a triangular system of equations that can be
solved for αn,k.

Definition 2.1. We say that the sequence pn(x) in Theorem 2.1 is the sequence of polynomials
associated for fk(t).

Theorem 2.2 (Expansion theorem). Let fk(t) be a delta series. Then for any h(t) in F

h(t)=
∞∑

k=0

〈h(t) | pk(x)〉
k!

fk(t).

From Proposition 2.3 we have〈 ∞∑
k=0

〈h(t) | pk(x)〉
k!

fk(t) | pn(x)

〉
=

∞∑
k=0

〈h(t) | pk(x)〉
k!

〈 fk(t) | pn(x)〉

= 〈h(t) | pn(x)〉
n!

n!

= 〈h(t) | pn(x)〉 .

From Proposition 2.5 we have

h(t)=
∞∑

k=0

〈h(t) | pk(x)〉
k!

fk(t) .
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Corollary 2.1. Let fk(t) be a delta series and let pn(x) be the sequence of polynomials associated
for fk(t). Then

pn(x)= f c
n(x) ,

where f c
n(x) is the compositional inverse of f c

n(x) (conjugate of fn(x)).

From the expansion theorem, for a ∈ R we have

eat =
∞∑

n=0

〈eat | pn(x)〉
n!

fn(t)=
∞∑

n=0

pn(a)
n!

fn(t)

then, we have,
∞∑

k=0

ak

k!
tk =

∞∑
n=0

pn(a)
n!

fn(t)

therefore,
∞∑

k=0

ak

k!
fk(t)=

∞∑
n=0

pn(a)
n!

tn

so,
∞∑

n=0

f c
n(a)
k!

tn =
∞∑

n=0

pn(a)
n!

tn

we get,

f c
n(a)= pn(a)

so,

pn(x)= f c
n(x).

In other words,

M(pn)= M
(
f c
n

)
.

2.3 Illustration

From The Expansion Theorem, the functional f (t)= ent−1
t can be developed by using the delta

series

fk(t)= (
ehk t −1

)k, k ≥ 0,

where hk non-zero parameters.

We have
ent −1

t
=

∞∑
k=0

αk

k!
(
ehk t −1

)k,

where

αk =
〈

ent −1
t

∣∣∣ pk(x)
〉

,

pk(x) is the sequence of polynomials associated for fk(t).
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pk(x) can be determined by using Corollary 2.1;

M (pn)= M
(
f c
n

)
.

We have,

f1(t)= (
eh1t −1

)= ∞∑
n=1

hn
1

n!
tn

f2(t)= (
eh2t −1

)2 =
( ∞∑

n=1

hn
2

n!
tn

)2

f3(t)= (
eh3t −1

)3 =
( ∞∑

n=1

hn
3

n!
tn

)3

...

fk(t)= (
ehk t −1

)k =
( ∞∑

n=1

hn
k

n!
tn

)k

.

Suppose
hn

k
n! = Cn

k , for k,n = 1,2, . . . , so

M ( fk)=



1 0 0 0 · · · 0 · · ·
0 C1

1 0 0 · · · 0 · · ·
0 C2

1 C1
2 ·C1

2 0 · · · 0 · · ·
0 C3

1 C2
2 ·C2

2 C1
3 ·C1

3 ·C1
3 · · · 0 · · ·

...
...

...
...

...
...

...

0 Ck
1 Ck−1

2 ·Ck−1
2 Ck−2

3 ·Ck−2
3 ·Ck−2

3 · · · C1
k ·C1

k ·C1
k · · · · ·C1

k · · ·
...

...
...

...
...

...
...



.

Which can be written

M ( fk)=



1 0 0 0 · · · 0 · · ·
0 C1

1 0 0 · · · 0 · · ·
0 C2

1 C1
2(2) 0 · · · 0 · · ·

0 C3
1 C2

2(2) C1
3(3) · · · 0 · · ·

...
...

...
...

...
...

...

0 Ck
1 Ck−1

2 (2) Ck−2
3 (3) · · · C1

k(k) · · ·
...

...
...

...
...

...
...



.
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Where Cn
k (i)= Cn

k ·Cn
k · · · · ·Cn

k , i times. So,

M
(
f c
k
)=



1 0 0 0 · · · 0 · · ·
0 C1

1 C2
1 C3

1 · · · Ck
1 · · ·

0 0 C1
2(2) C2

2(2) · · · Ck−1
2 (2) · · ·

0 0 0 C1
3(3) · · · Ck−2

3 (3) · · ·
...

...
...

...
...

...
...

0 0 0 0 · · · C1
k(k) · · ·

...
...

...
...

...
...

...



.

Thus,

• M
(
f c
0
)= 1. So, M

(
f c
0

)
= 1. And p0(x)= 1, and consequently

α0 =
∫ n

0
dx = n .

• M
(
f c
1
)= (

1 0
0 C1

1

)
=

(
1 0
0 h1

)
.

So, M
(
f c
1

)
=

(
1 0

0 1
h1

)
.

And p1(x)= 1
h1

x, and consequently

α1 =
∫ n

0

1
h1

xdx = n2

2h1
.

• M
(
f c
2
)=


1 0 0

0 C1
1 C2

1

0 0 C1
2(2)

=


1 0 0

0 h1
h2

1
2!

0 0 h2
2

.

So, M
(
f c
2

)
=


1 0 0

0 1
h1

−h1
2h2

2

0 0 1
h2

2

.

And p2(x)= −h1

2h2
2

x+ 1
h2

2
x2, and consequently

α2 =
∫ n

0

(
−h1

2h2
2

x+ 1
h2

2
x2

)
dx = −h1

4h2
2

n2 + 1
3h2

2
n3.

In the same way, we calculate α3,α4 · · · .
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3. Parameterized Gregory Formula

3.1 Plausibility of the formula

Consider the parametized Gregory formula (PG) [4],∫ n

0
f (x)dx =

n∑
k=0

f (k)+ ∑
k≥0

αk

k!
(
∆k

hk
f (0)+∆k

−hk
f (n)

)
. (3.1)

with end corrections where ∆h is the forward difference operator with step size h.

Note that for hk = 1 (k = 1,2, . . .), the formula (3.1) reduces to the classical Gregory
integration formula [1],∫ n

0
f (x)dx =

n∑
k=0

f (k)+ ∑
k≥0

αk

k!
(
∆k

1 f (0)+∆k
−1 f (n)

)
. (3.2)

The formula (3.1) has a sense so n ≥ 1. In the contrary case an appropriate variable change will
permit us to do the integral without no difficulty.

To justify the formula (3.1) we shall use the umbral methods developed by Rota and his
school ( [5], [8], [9], [10], [11]), instead of classical generating function technique.

So, we shall replace f (x) by etx (etx is the generating function of the sequence tn

n! ).

We have,∫ n

0
etxdx = ent −1

t
.

n∑
k=0

etk =
(
et)n+1 −1

et −1
= ent.et −1

et −1
.

∆k
hk

etx = etx(ethk −1
)k.

Then (3.1) becomes
ent −1

t
= ent · et −1

et −1
+ ∑

k≥0

αk

k!
(
ethk −1

)k + ∑
k≥0

αk

k!
(
e−thk −1

)ketn,

so,
ent

t
− 1

t
= ent · et

et −1
− 1

et −1
+ ∑

k≥0

αk

k!
(
ethk −1big)k + ent ∑

k≥0

αk

k!
(
e−thk −1

)k,

so,

ent

(
1
t
− et

et −1
− ∑

k≥0

αk

k!
(
e−thk −1

)k
)
+

(
1
−t

+ 1
et −1

− ∑
k≥0

αk

k!
(
ethk −1

)k
)
= 0,

so,

ent

(
1
t
+ 1

e−t −1
− ∑

k≥0

αk

k!
(
e−thk −1

)k
)
+

(
1
−t

+ 1
et −1

− ∑
k≥0

αk

k!
(
ethk −1

)k
)
= 0.

Suppose that

G(t)= 1
t
+ 1

e−t −1
− ∑

k≥0

αk

k!
(
e−thk −1

)k,
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then (3.1) becomes

entG(t)+G (−t)= 0.

we want the formula (3.1) that is independent of n. So G(t)= 0; from the Theorem 2.2 (Expansion
Theorem), we have

1
et −1

− 1
t
= ∑

k≥0

αk

k!
(
ethk −1

)k ,

where

αk =
〈

1
et −1

− 1
t

∣∣∣ pk(x)
〉

.

pk(x) is the sequence of polynomials associated for
(
ethk −1

)k.

Suppose that

f (t)= 1
et −1

− 1
t
,

so,

f (t)= t− (
et −1

)
t (et −1)

,

so, (
et −1

) · f (t)= 1−
(
et −1

)
t

,

and suppose that

f (t)= ∑
n≥0

γntn,

so, ∑
k≥0

tk

(k+1)!

∑
k≥0

γktk =− ∑
k≥0

tk

(k+2)!
,

so, ∑
k≥0

(
k∑

n=0

1
(k+1)!

γn−k

)
tk =− ∑

k≥0

tk

(k+2)!
,

then the last equality is equivalent to the system

1 0 0 0 · · · 0 · · ·
1
2! 1 0 0 · · · 0 · · ·
1
3!

1
2! 1 0 · · · 0 · · ·

1
4!

1
3!

1
2! 1 · · · 0 · · ·

...
...

...
...

...
...

...
1
n!

1
(n−1)!

1
(n−2)! · · · · · · 1 · · ·

...
...

...
...

...
...

...


.



γ0

γ1

γ2

γ3

...

γn

...


=



− 1
2!

− 1
3!

− 1
4!

− 1
5!

...

− 1
(n+2)!

...


.
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Therefore

γ0 = −1
2

, γ1 = 1
12

, γ2 = 0, γ3 = −1
720

, γ4 = 0, · · · .

So,

α0 = 〈 f (t) | p0(x)〉 = 〈 f (t) | 1〉
= γ0

=−1
2

,

α1 = 〈 f (t) | p1(x)〉 =
〈

f (t)
∣∣∣ 1

h1
x
〉

= 1
h1
γ1

= 1
12h1

,

α2 = 〈 f (t) | p2(x)〉 =
〈

f (t)
∣∣∣ − h1

2h2
2

x+ 1
h2

2
x2

〉

=− h1

2h2
2
γ1 + 1

h2
2
γ2

=− h1

24h2
2

.

In the same way, we find

α3 = 1
720h3

3

(−10h2
1 +30h2h1 −1

)
,

α4 = −1
480h4

4

(
5
3

h3
1 −10h3h2

1 −
35
3

h2
2h1 +30h3h2h1 −h3

)
,

α5 = 1
60480h5

5
(−42h4

1 +630h3
2h1 +1050h2

3h2
2 −3150h2

3h2h1 +420h4h3
1 −2520h4h3

2h1

−2940h4h2
2h1 +7560h4h3h2h1 +105h2

3 −252h4h3 +2).

4. Improvement of Gregory Formula

Recall that our goal is to prove that the Gregory Formula can be optimized by minimizing some
of their coefficients in the remainder term. Truncate the right member of (3.1) at the 5th term,
we get the approximation:∫ n

0
f (x)dx ≈

n∑
k=0

f (k)+a0
(
f (0)+ f (n)

)+α1(h1)
(
f (h1)− f (0)+ f (n−h1)− f (n)

)
+ α2(h1,h2)

2!
(
f (2h2)−2 f (h2)+ f (0)+ f (n−2h2)−2 f (n−h2)+ f (n)

)
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+ α3(h1, · · · ,h3)
3!

(
∆3

h3
f (0)+∆3

−h3
f (n)

)+ α4(h1, · · · ,h4)
4!

(
∆4

h4
f (0)+∆4

−h4
f (n)

)
+ α5(h1, · · · ,h5)

5!
(
∆5

h5
f (0)+∆5

−h5
f (n)

)
. (4.1)

For α3 (h1, . . . ,h3), α4(h1, . . . ,h4) and α5 (h1, . . . ,h5) smallest possible the formula will have a
simple form with a number limited of evaluations∫ n

0
f (x)dx ≈

n∑
k=0

f (k)− 1
2

(
f (0)+ f (n)

)+ 1
12h1

(
f (h1)− f (0)+ f (n−h1)− f (n)

)
− h1

48h2
2

(
f (2h2)−2 f (h2)+ f (0)+ f (n−2h2)−2 f (n−h2)+ f (n)

)
.

To this end; we try to determine h1,h2,h3,h4 and h5; we take h4,h5 = 1, in this study as
parameters and let’s solve this non linear system.

The problem is reduced to solve the system:
a3 (h1, . . . ,h3)= 0,
a4(h1, . . . ,h4)= 0,
a5 (h1, . . . ,h5)= 0.

is about problem resolving:

S



(
1/720h3

3
)(−10h2

1 +30h2h1 −1
)= 0,(−1/480h4

4
)(

5/3h3
1 −10h3h2

1 −35/3h2
2h1 +30h3h2h1 −h3

)= 0,(
1/60480h5

5
)(−42h4

1 +630h3
2h1 +1050h2

3h2
2 −3150h2

3h2h1 +420h4h3
1 −2520h4h3h2

1

−2940h4h2
2h1 +7560h4h3h2h1 +105h2

3 −252h4h3 +2)
)= 0.

(4.2)

Thus, for S ≈ 0, we have:∫ n

0
f (x)dx ≈

n∑
k=0

f (k)+a0
(
f (0)+ f (n)

)+ a1(h1)
1!

(
f (h1)− f (0)+ f (n−h1)− f (n)

)
+ a2(h1,h2)

2!
(
f (2h2)−2 f (h2)+ f (0)+ f (n−2h2)−2 f (n−h2)+ f (n)

)
.

The system (4.2) provides us the solution:

h1 = 0.2633, h2 = 0.2144, h3 = 0.2113 (h4 = h5 = 1).

Finally PG:∫ n

0
f (x)dx ≈1

2
f (0)+ f (1)+ . . .+ f (n−1)+1/2 f (n)

+0.1
(
6 f (0.2)−5 f (0)− f (0.4)+6 f (n−0.2)− f (n−0.4)−5 f (n)

)
. (4.3)

To test the performance of this algorithm we took various functions and we looked for an
approximation with Gregory formula (G) and Parameterized Gregory’s Formula (PG) Table 1.
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Table 1. Comparison

Function Interval Exact valor Formula Approx. Valor Rel. Error

exp(x) [0,5] 147.4131591025766
G 149.2289234815334 0.012317518938003

PG 148.0530705285946 0.004340938284707

1
1+x2 [0,5] 1.373400766945016

G 1.328883861236802 0.032413631024276

PG 1.366857351423234 0.004764389011037

p
x [0,10] 21.081900000000001

G 20.98174461996889 0.004750775785442

PG 21.06869053573215 0.000626578452029

1
1+x [0,2] 1.098612288668110

G 1.111111111111111 0.011376918474264

PG 1.104018629290736 0.004921063307221

exp
ex+1 [0,20] 44050.10320780000

G 44099.75181831744 0.001127094079286

PG 44076.98817671046 0.000610327035640

5. Conclusions
This paper has presented a new numerical integration formula PG. Experimental results on
several well-known functions (badly to integrate by the classic methods (exp(x), . . .) show that
the proposed formula give good results and prove that obtained formula can be rendered a
powerful formula for library use.
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