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1. Introduction
In recent years, many researchers and mathematicians have defined and studied the graphs on
several algebraic structures, like groups, rings, vector spaces, modules and obtained interesting
results, for instance see [2,3,5,7,12].

Let G be a group. We define the normal intersection graph of G, as an undirected graph with
no loops and multiple edges, whose vertex set is the set of all non-trivial subgroups of G and
two distinct vertices H and K are adjacent if and only if H∩K is normal in G and denote it by
∆(G).
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Let X = (V ,E) be a simple graph with the vertex set V and edge set E. We say that X
is a planar graph if it can be drawn in the plane without their edges crossing. Planarity of
some graphs associated to groups, has been studied by some authors, see [1, 8, 11]. For the
standard terminology concerning graph theory and group theory, we the reader refer to [6]
and [9,10], respectively. The maximum possible distance in X is called the diameter of X and
denoted by diam(X ). The girth of X , denoted by girth(X ), is the length of the shortest cycle
of X , (girth(X )=∞ if X has no cycle). Two graphs Kn and Km,n denote the complete graph of
order n and the complete bipartite graph with part sizes m and n. A graph whose edge set is
empty is called a null graph or totally disconnected graph. Let F be a graph, a graph G is F -free
if G contains no induced subgraph isomorphic to F . A set D of vertices of X is a dominating set
if every vertex in V (X )\ D is adjacent to at least one vertex in D. The minimum cardinality
among the dominating sets of X is called the domination number of X and is denoted by γ(X ).

For a group G, by Π(G), we mean the set of all prime divisors of |G| and by Sylp(G), the set
of all Sylow p-subgroups of G for p ∈Π(G). The number of the Sylow p-subgroups of a group G
is denoted by np(G) or simply by np . We denote the normal subgroup N and the characteristic
subgroup H in G briefly by N CG and H char G. For any natural numbers n, as usual, we
write Zn, D2n, An and Sn to denote the cyclic group of order n, the dihedral group of order 2n,
the alternating group and the symmetric group of degree n, respectively. We will denote the
multiplicative order of a non-zero element x ∈Zn by ordn(x).

In this paper, we study the planarity of the normal intersection graph of G and determine
groups that the normal intersection graph of subgroups is planar. In the rest of the paper, we
study connectivity, diameter and girth of this graph and conclude that in the normal intersection
graph of abelian groups and finite non-abelian groups, the following condition are equivalent:

(i) ∆(G) is K3-free.

(ii) ∆(G) is forest.

(iii) ∆(G) is bipartite.

(iv) G 'Zp or Zp2 .

In Section 2 some preliminary results are mentioned. In Sections 3 and 4, we study the
planarity of the normal intersection graph of subgroups of all abelian groups and finite non-
abelian groups.

2. Preliminary Results

We devote this section to study some basic properties about planarity of the normal intersection
graph of subgroups of a given group. At first, we express the well-known Kuratowski’s Theorem.

Theorem 2.1 ([6, 6.13]). A graph is planar if and only if it contains no subgraph that is a
subdivision of either K5 or K3,3.
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Remark 2.2. (i) [10, 5.20] Let H and K be subgroups of a group G. If H char K and K CG,
then HCG.

(ii) [10, 4.6] If G is a finite p-group, then every maximal subgroup of G is normal and has
index p.

(iii) [10, 4.8] If G is a finite p-group of order pn and rs is the number of subgroups of G having
order ps (1< s < n), then rs is congruent to 1 (mod p).

(iv) [10, P.77] If |G| = pn, where p is a prime, then for k = 0,1, . . . ,n, G contains a normal
subgroup of order pk.

(v) [9, 5.3.7 (Dedekind, Baer)] All the subgroups of a group G are normal if and only if G
is abelian or the direct product of a quaternion group of order 8, an elementary abelian
2-group and an abelian group with all its elements of odd order.

(vi) [10, P.107 (Burnside’s Theorem)] If p and q are primes, then every group of order pmqn is
solvable.

Lemma 2.3. Let G be a group. Then ∆(G) is non-planar if one of the following holds:

(i) There exists a normal subgroup N of G such that ∆(G/N) is non-planar.

(ii) There exists a characteristic subgroup M of G such that ∆(M) is non-planar.

Proof. (i): Assume that H1/N and H2/N be two subgroups of G/N . If (H1/N)∩ (H2/N) is normal
in G/N , then clearly H1∩H2 is normal in G. Thus if ∆(G/N) is non-planar, by the Kuratowski’s
Theorem ∆(G/N) contains a subdivision of K5 or K3,3 as a subgraph, so does ∆(G). Hence using
Kuratowski’s Theorem, ∆(G) is non-planar.

(ii): According to Remark 2.2(i), it is easy to see that if M is a characteristic subgroup of G,
then ∆(M) is a subgraph of ∆(G). Thus if ∆(M) is non-planar, like the previous, by theorem
Kuratowski’s non-planarity of ∆(M) implies that ∆(G) is non-planar.

Lemma 2.4. Let G ' G1 ×·· ·×Gn. If there exist 1 ≤ i ≤ n such that ∆(G i) is non-planar. Then
∆(G) is non-planar.

Proof. Assume that NCG i , thus NCG, hence ∆(G i) is a subgraph of ∆(G). Thus, non-planarity
of ∆(G i) implies that ∆(G) is non-planar.

Remark 2.5. Assume that G1 and G2 are two groups. If ∆(G1) ' ∆(G2), then G1 ' G2 is not
true in general. For example, we consider two non-isomorphic groups Zp5 and Q8, both groups
have 5 non-trivial subgroups which are normal subgroups and hence ∆(Zp5)'∆(Q8)' K5.

3. The Planarity of Abelian Groups
In this section, we will classify the abelian groups whose normal intersection graph of subgroups
are planar. At first, we investigate the groups whose normal intersection graphs are complete.
We have the following theorem:

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 127–137, 2018



130 Some Results of the Normal Intersection Graph of a Group: E. Aboomahigir and A. Iranmanesh

Theorem 3.1. Let G be a group. Then ∆(G) is a complete graph if and only if G is an abelian
group or G ' Q8 ×H ×K , where H is a (necessarily abelian) group of exponent 2 and K is an
abelian group in which every element has an odd order.

Proof. If ∆(G) is a complete, then G is adjacent to all non-trivial subgroups of G in ∆(G). So
every subgroup of G is a normal subgroup. Hence by Remark 2.2(v), G is an abelian group or
G 'Q8 ×H×K . The other side is obvious.

Theorem 3.2. Let G be an abelian group. Then ∆(G) is a planar graph if and only if G is
isomorphic to one of the following groups:

(i) Zpα , where p is a prime and 1≤α≤ 4.

(ii) Zpq, where p and q are distinct primes.

(iii) Z2 ×Z2.

Proof. Assume that G is an infinite abelian group. Then ∆(G) is an infinite complete graph and
hence ∆(G) is non-planar.
Now, assume that G is a finite abelian group of |G| = pα1

1 pα2
2 . . . pαk

k , where every pi is a prime
and αi is a positive integer for i = 1, . . . ,k. We have the two following cases.
Case 1. If G is cyclic, then the number of distinct subgroups of G is the number of distinct
positive divisors of |G|. Thus, by Theorem 3.1, we have ∆(G)= K t, where t = (α1 +1)(α2 +1) . . .
(αk +1)−1. So ∆(G) is planar if and only if t ≤ 4. This implies that the following statements
hold:

• If k = 1, then ∆(G) is planar if and only if α1 ≤ 4, so G 'Zpα , where α≤ 4.

• If k = 2, then ∆(G) is planar only if α1 =α2 = 1. This implies G 'Zp1 p2 .

• If k > 2, then it is easy to see that ∆(G) is non-planar.

Case 2. If G is non-cyclic, then G contains a subgroup isomorphic to Zp ×Zp. Note that this
subgroup contains p+1 subgroups of order p such that pairwise have trivial intersection. Thus,
these p+1 subgroups with Zp ×Zp form a complete graph Kp+2 as a subgraph of ∆(G). If p > 2,
by Kuratowski’s Theorem ∆(G) is non-planar. If p = 2, two cases occur: if G 'Z2×Z2. It is easy
to see ∆(G)= K4, so ∆(G) is planar. But if |G| > 4, then ∆(G) contains a complete subgraph with
more than 5 vertices, thus ∆(G) is non-planar. The converse is obvious.

4. The Planarity of Finite Non-abelian Groups
In this section we assume that G is a finite non-abelian group. We first show that if G is a
finite group whose order has more than two distinct prime factors, then ∆(G) is non-planar and
we conclude that the normal intersection graph of non-solvable groups is non-planar. Then we
investigate the planarity of the normal intersection graph of solvable groups.

Theorem 4.1. Let G be a finite group whose order has more than two distinct prime factors,
then ∆(G) is non-planar.

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 127–137, 2018



Some Results of the Normal Intersection Graph of a Group: E. Aboomahigir and A. Iranmanesh 131

Proof. Let G be a group of order pαqβrγm, where p, q, r are distinct primes which are coprime
to positive integer m. Now, we consider two cases:

Case 1. Assume that G has only one subgroups of each orders p, q and r, we call them P , Q
and R, respectively. Therefore, P , Q, R, PQ, PR are normal subgroups of G. So by Kuratowski’s
Theorem, ∆(G) is non-planar.

Case 2. Assume that G has more than one subgroup of at least one of the orders p, q, r like
p, then according to Remark 2.2(iii), G have at least p+1 subgroups of order p. These p+1
subgroups with Q and R form a complete graph of order at least p+3 in ∆(G) and the proof is
completed.

Theorem 4.2. Let G be a finite non-solvable group. Then ∆(G) is non-planar.

Proof. By Remark 2.2(vi), if G is a non-solvable group, then Π(G) ≥ 3 and by the previous
theorem ∆(G) is non-planar.

Lemma 4.3. Let G be a finite non-abelian p-group, where p is a prime. Then ∆(G) is non-planar.

Proof. We have |G| = pn (n > 2). By Remark 2.2(ii), every maximal subgroup of G is normal
and has index p. We know that, if the number maximal subgroups of G is 1, then G is cyclic
which is a contradiction. Thus according to Remark 2.2(iii), G contains at least p+1 maximal
subgroups, but according to Remark 2.2(iv), G has at least one normal subgroup of order pn−2,
say N . Thus maximal subgroups of G and N and G form a complete graph of order at least
p+3 in ∆(G), and the proof is completed.

Theorem 4.4. Let G be a finite non-abelian nilpotent group. Then ∆(G) is non-planar.

Proof. By [10, 5.39] G is the direct product of its Sylow subgroups and since G is a non-abelian
group, it has at least one non-abelian Sylow subgroup. By Lemma 4.3, normal intersection
graph of its non-abelian Sylow subgroup is non-planar, so by Lemma 2.4, ∆(G) is non-planar.

Now we investigate the planarity of non-nilpotent solvable groups and show that ∆(G) is
always non-planar except for S3.

Lemma 4.5. Let G be a non-abelian group of order pq, where p and q are distinct primes and
p < q. Then ∆(G) is planar if and only if G 'Z3oZ2 ' S3.

Proof. By [4, p. 48], up to isomorphism, the only groups of order pq are Zpq, if p - q−1 and
Zq oZp , if p | q−1. Since G is non-abelian, G 'Zq oZp . So, G consists q Sylow p-subgroups of
order p, such that pairwise have trivial intersection and a unique subgroup of order q which
is normal in G. These q+1 subgroups form Kq+1 as a subgraph ∆(G). Since p < q, so q ≥ 3. If
q > 3, then ∆(G) is non-planar. But, when (p, q)= (2,3), then G 'Z3oZ2 ' S3. Group S3 has 5
non-trivial subgroups and since subgroups of order 2 are not normal subgroups of S3, these are
not adjacent to S3. By Kuratowaski’s Theorem, the proof is completed.
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Consider the semi-direct product Zq otZpα = 〈a,b | aq = bpα = 1, bab−1 = ai, ordq(i) = pt〉,
where p and q are distinct primes with pt | q−1, t ≥ 0. Then every semi-direct product ZqotZpα

is one of these types. Note that in the future, when t = 1, we suppress the subscript.

Lemma 4.6. Let G be a non-nilpotent group of order p2q, where p and q are distinct primes.
Then ∆(G) is non-planar.

Proof. Burnside provides a classification of groups of order p2q in [4, pp. 76-80]. By this
classification, we have the following cases:

Case 1. p < q. In this case, we have three subcases:

Subcase 1. p - q−1. By Sylow’s Theorem, we have np = 1. Let P ∈ Sylp(G) and Q ∈ Sylq(G),
then G ' P oϕQ, where ϕ : Q −→ Aut(P) is a homomorphism. It is easy to see that ϕ is the
trivial homomorphism, so G 'Zp2q. There are no non-abelian groups in this case.

Subcase 2. p | q−1, p2 - q−1. In this case, we have two non-abelian groups. The first is
G1 =Zq oZp2 , where nq ∈ {1, p, p2}. If nq = p, then q | p−1 which is impossible and if nq = p2,
then q | (p+1)(p−1), which implies that q | p+1 or q | p−1 which is true only when (p, q)= (2,3),
we check the case separately. Now, consider nq = 1. Since G1 is a non-nilpotent, G1 has q Sylow
p-subgroups of order p2, say Pi, (1 ≤ i ≤ q). Thus G1 has q subgroups of order p, say P ′

i . P ′
i

together with a subgroup of order q form a complete graph Kq+1 as a subgraph of ∆(G1). Since
q > 3, ∆(G1) is non-planar.

The second group in this subcase is G2 = 〈a,b, c|aq = bp = cp = 1,bab−1 = ai, ca = ac, cb =
bc,ordq(i) = p〉. Clearly, c ∈ Z(G2), so p | |Z(G2)|, whereas G2 is non-abelian, so |Z(G2)| = p,
hence G2/Z(G2)'Zq oZp. According to the previous lemma, the normal intersection graph of
Zq oZp is non-planar unless (p, q) = (2,3). Thus for (p, q) 6= (2,3), by Lemma 2.3(i), ∆(G2) is
non-planar.

Subcase 3. p2 | q−1. We automatically have both groups G1 and G2 from Subcase 2. As well
as the group G3 =Zqo2Zp2 = 〈a,b|aq = bp2 = 1,bab−1 = ai,ordq(i)= p2〉. In Subcase 2, we have
already showed that ∆(G1) and ∆(G2) are non-planar. We now check the planarity of ∆(G3). G3

has a unique subgroup K = 〈a,bp〉 ' Zq oZp of order pq, which is a characteristic subgroup
in G3. By Lemma 4.5, if (p, q) 6= (2,3), then ∆(K) is non-planar and by Lemma 2.4, ∆(G3) is
non-planar.

Case 2. p > q. We have the following subcases:

Subcase 1. q - p2 −1. There are no non-abelian groups in this subcase.

Subcase 2. q|(p−1). In this case there are two groups:
The first one is G4 = 〈a,b|ap2 = bq = 1,bab−1 = ai,ordp2(i) = q〉. By Sylow’s Theorem, G4 has
a unique subgroup P of order p2 and has a unique subgroup P ′ of order p, G4 contains p2

Sylow q-subgroups of order q, say Q i , 1≤ i ≤ p2, Q′
is pairwise have trivial intersection. Thus,

these p2 subgroups together with P and P ′ form Kp2+2 as a subgraph of ∆(G4). Note that p ≥ 3,
therefore ∆(G4) is not planar.

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. 127–137, 2018



Some Results of the Normal Intersection Graph of a Group: E. Aboomahigir and A. Iranmanesh 133

Next, we have the family of groups 〈a,b, c|ap = bp = cq = 1, cac−1 = ai, cbc−1 = bit
,ab =

ba,ordp(i)= q〉. There are (q+3)/2 isomorphism types in this family (one for t = 0 and one for
each pair {x, x−1} in Fp \ {0}). We will refer to all of these groups as G5(t) of order p2q. Here
H1 = 〈a〉,H2 = 〈b〉 are subgroups of order p in G5(t). So, by Remark 2.2(iii), it has at least
p+1 subgroups of order p and it has one subgroup Q of order q, such that p+2 subgroups
pairwise have trivial intersection. Thus, ∆(G5(t)) contains a complete graph Kp+2 as a subgraph.
Therefore ∆(G5(t)) is non-planar.

Subcase 3. q|p+1. Only the non-abelian group here is G6 = (Zp × Zp)o Zq = 〈a,b, c|ap =
bp = cq = 1,ab = ba, cac−1 = aib j, cbc−1 = akbl〉, where M =

(
i j
k l

)
has order q in GL2(p).

The same as ∆(G5(t)) can be demonstrated that ∆(G6) is non-planar. Now, we consider the
case that (p, q) = (2,3). Note that if (p, q) = (2,3), then cases 1 and 2 are not mutually
exclusive. There are three non-abelian groups of order 12 up to isomorphism: Z3 oZ4,D12

and A4. In Z3oZ4 = 〈a,b|a3 = b4 = 1,bab−1 = ai,ord3(i)= 2〉, H1 = 〈a〉 is normal and H2 = 〈b2〉
and H3 = 〈a,b2〉 are unique subgroups of orders 2 and 6, respectively. So they are normal.
H4 = 〈b〉,H5 = 〈ab〉 and H6 = 〈a2b〉 are also subgroups of G. H2 is inclusion in each of Hi ,
i = 3,4,5,6 except H1. The intersection H1 with Hi , i = 2,4,5,6 is trivial and H1 ⊆ H3. So,
∆(Z3oZ4) contains K5 as subgraph of ∆(G), thus it is non-planar, see Figure 1.

Z3oZ4

H3H6

H5 H4

H2 H1

Figure 1. ∆(Z3oZ4)

Group A4 consist of 4 subgroups isomorphic to A3 and 3 subgroups of order 2. These 7 subgroups
pairwise have trivial intersection. Thus, ∆(A4) is non-planar. In general, in D2n for n ≥ 5, 〈aib〉
are distinct minimal subgroups of order 2, where 0 ≤ i < n−1. Therefore, these n subgroups
form Kn as a subgraph of ∆(D2n), so ∆(D2n) is non-planar.

Lemma 4.7. Let G be a non-nilpotent group of order pαq, where the p, q are distinct primes
and α≥ 3. Then ∆(G) is non-planar.

Proof. For the proof of this lemma, we consider the following cases:

Case 1. p > q. Assume that P is a p-Sylow subgroup of G. By Sylow’s Theorem, np(G) = 1,
therefore G ' PoZq . Since P char G by Lemma 2.3(ii), it suffices to consider only when ∆(P) is
planar. That is, P 'Zp3 and P 'Zp4 . So we have two groups, say, G1 'Zp3oZq or G2 'Zp4oZq .
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Here we prove non-planarity of ∆(G1) and non-planarity of ∆(G2) is similar to ∆(G1). Since P
char G1, by Remark 2.2(i), 3 subgroups Zp3 , pZp3 , p2Zp3 which are normal subgroups of P ,
are normal in G1. Since G1 is non-nilpotent, hence nq(G1) 6= 1. Therefore, G1 has at least p
Sylow q-subgroups, say Q i , i = 1, . . . , p. Hence V = {Zp3 , pZp3 , p2Zp3 ,Q1, . . . ,Qp} forms Kp+3 as
subgraph of ∆(G1), Therefore by the Kuratowski’s Theorem ∆(G1) is non-planar.

Case 2. p < q. In this case, if np(G)= 1, then the same as Case 1, can be shown that ∆(G) is
non-planar. If np(G) 6= 1, then np(G)= q. But this only leaves pαq− q(pα−1)= q elements, so
nq(G)= 1. Therefore G =QoP such that Q is a Sylow q-subgroup of G which it is normal in G
and P is a Sylow p-subgroup of G. Now, we from G/Q. By Lemma 2.3(i), it suffices to consider
only when ∆(G/Q) is planar, that is, G/Q 'Zp3 or G/Q 'Zp4 , hence G 'ZqoZp3 or G 'ZqoZp4 .
In both cases, G has at least one subgroup of order p. If G has exactly one subgroup of order p,
say N and N is a normal subgroup of G. So N , Q, N2, NQ, G form K5 as a subgraph of ∆(G),
hence ∆(G) is non-planar. If we have more than one subgroup of order p, by Remark 2.2(iii),
there are at least p+1 subgroups of order p say Hi . Also G has a normal subgroup K of order
pα−1q. These p+1 subgroups with K and Q form Kp+3 as subgraph of ∆(G) and since p ≥ 2
proof is complete.

Theorem 4.8. Let G be a group of order pαqβ, where the p and q are distinct primes, α> 1 and
β> 0. Then ∆(G) is non-planar.

Proof. We have shown by Theorems 3.2 and 4.4, if G is an abelian group or a finite non-abelian
nilpotent group such that α > 1 and β > 0, then ∆(G) is non-planar. So, assume that G is
a solvable non-nilpotent group. If α,β ≥ 3, then ∆(G) contains the bipartite graph K3,3 with
partite sets V1 = {A1, A2, A3} and V2 = {B1,B2,B3}, where A i and Bi are subgroups of orders pi

and qi for i = 1,2,3, respectively. So ∆(G) is non-planar. Also by Lemma 4.7, demonstrated that
when |G| = pqβ, ∆(G) is non-planar. Now, it suffices to prove that it just when |G| = p2qβ, β> 1.
We consider the following cases:

Case 1. p > q. We know that nq ∈ {1, p, p2}. If nq = 1, then G =QoP where Q is the q-Sylow
subgroup of G, so Q is a normal and characteristic subgroup of G and P is a p-Sylow subgroup
of G. By Lemma 2.3(ii), we shall prove non-planarity ∆(G) for when ∆(Q) is planar, that is,
when G is isomorphic to Zq3 oP or Zq4 oP . The proof of this case is similar to Lemma 4.7. If
nq = p2, then number of elements only leaves p2qβ− p2(qβ−1) = p2 elements. So np = 1 and
G ' (Zp ×Zp)oQ or G 'Zp2 oQ. In the former event, Zp ×Zp has p+1 subgroups of order p,
say Hi where i = 1, . . . , p+1 and G contains p2 Sylow q-subgroups , say Q i where i = 1, . . . , p2.
Thus ∆(G) contains the bipartite graph Kp+1,p2 with partite sets V1 = {Hi|i = 1, . . . , p+1} and
V2 = {Q i|i = 1, . . . , p2}. Since p ≥ 3, ∆(G) is non-planar. When G 'Zp2 oQ, whereas Zp2 char G,
so pZp2 is a normal subgroup of G. Assume that G has only one subgroup of order q, say N and
it is normal in G. Thus {Zp2 , pZp2 , N,Zp2 N, (pZp2)N,G} form a complete subgraph K6 in ∆(G).
Otherwise, if G has more than one subgroup of order q, by Remark 2.2(iii) G has at least q+1
subgroups of order q that with Zp2 , pZp2 form a complete subgraph Kq+3 in ∆(G). Therefore,
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∆(G) is non-planar. Now, let nq = p and np = 1, then G = P oQ and the proof is similar to
an earlier case. Assume that nq = p and np 6= 1, so np | qβ, but by Sylow’s Theorem, np 6= q,
therefore np ≥ q2, we put p Sylow q-subgroups of G in a set and at least q2 Sylow p-subgroups
in the other set. It is clear that the two sets are partite sets of the bipartite graph, hence by the
Kuratowski’s Theorem ∆(G) is non-planar.

Case 2. p < q. In this case, nq ∈ {1, p, p2}, if nq = p, then q | p−1, in contradiction to our
assumption. Now, assume that nq = p2, so q | p2 −1 which implies that q | p+1 or q | p−1.
But this is possible only in the case (p, q) = (2,3). Let (p, q) = (2,3), it is clear that n3 = 4 and
n2 = 1 which imply that G ' (Z2 ×Z2)oQ or G ' Z4 oQ. In both cases, we in the previous
case have seen that ∆(G) is non-planar. Now, assume that (p, q) 6= (2,3), so nq = 1. Since G is
a non-nilpotent group, np 6= 1 and G ' Q oP . As, Q char G by Lemma 2.3(ii), It suffices to
consider only when ∆(Q) is planar. In a similar manner to Lemma 4.7, we may prove that also
in these cases ∆(G) is non-planar. The proof is completed.

Corollary 4.9. Let G be a finite group. Then ∆(G) is planar graph if and only if G is isomorphic
to one of the following groups:

(i) Zpα , where p is a prime and 1≤α≤ 4 .

(ii) Zpq, where p and q are distinct primes.

(iii) Z2 ×Z2 .

(iv) S3 .

In continuation, we obtain some results related to the normal intersection graph.

Corollary 4.10. Let G be an abelian group or a finite non-abelian group. Then girth(∆(G)) =
{3,∞}.

Proof. According to the proof of Theorem 3.2, if G is an abelian group, then girth(G)= 3 except
for G 'Zp or Zp2 . If G is a finite non-abelian p-group, then by proof of Lemma 4.5, girth(G)= 3.
Now, let G be a non-abelian group of order pα1

1 pα2
2 m, where p1, p2 are distinct primes which

are coprime to positive integer m and αi > 0. Consider two following cases:

Case 1. Assume that G has only one subgroups of each orders p1 and p2, we call them H1 and
H2, respectively. Therefore, H1,H2 are normal subgroups of G. So {H1,H2,G} forms a 3-cycle in
∆(G).

Case 2. Assume that G has more than one subgroup of at least one of the orders p1 or p2 like
p1, therefore according to Remark 2.2(iii), G has at least p1 +1 subgroups of order p1. These
p1+1 subgroups form a complete subgraph Kp1+1 in ∆(G). So in this case, girth(∆(G))= {3} and
the proof is completed.

The following corollary is an immediate consequence of the previous corollary.
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Corollary 4.11. Let G be an abelian group or a finite non-abelian group. Then the following are
equivalent:

(i) ∆(G) is K3-free.

(ii) ∆(G) is forest.

(iii) ∆(G) is bipartite.

(iv) G 'Zp or Zp2 .

Theorem 4.12. Let G 6' Zp be a finite nilpotent group. Then ∆(G) is a connected graph with
domination number γ(∆(G)) = 1 and diam(∆(G)) ≤ 2. Moreover, if G is not a Dedekind group,
then diam(∆(G))= 2.

Proof. Assume that p is any prime dividing |G|, there is a minimal normal subgroup of size
p, say N . Intersection of every subgroup of G with N is N or 1, so all of the subgroups of G
adjacent to N . Therefore, ∆(G) is connected and γ(∆(G))= 1 and hence diam(G)≤ 2. Now, if G
is not a Dedekind group, then according to Theorem 3.1, diam(∆(G))= 2.

Lemma 4.13. Let G be a simple group. Then ∆(G) is a disconnected graph.

Proof. Since G is simple and has no proper normal subgroups, G ' Zp or there is not any
adjacent between G and other non-trivial subgroups of G, so ∆(G) is a disconnected graph.

Finally, with respect to results of sections 2 and 3, we have the following corollary.

Corollary 4.14. Let G be an abelian group or a finite non-abelian group. Then ∆(G) is totally
disconnected if and only if G 'Zp , where p is a prime.

5. Conclusion
In this paper, we define the normal intersection graph of a group and we study the planarity of
this graph. We also obtain connectivity, diameter and girth of this graph. For future research,
one can investigate other properties of this graph and can obtain some properties of groups
using the properties of this graph. Also, we can study one subgraph of this graph whose vertex
set is the set of all non-trivial proper subgroups of G and two distinct vertices H and K are
adjacent if and only if H∩K is non-trivial normal subgroups of G.
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