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1. Introduction
In this paper, we are study the following Klein-Gordon-Maxwell system:{

−∆u+V (x)u− (2ω+φ)φu = f (x,u), x ∈R3,
∆φ= (ω+φ)u2, x ∈R3,

(KGM)

where ω> 0 is a constant, u, φ :R3 →R, V :R3 →R is a potential function.
The following system{

−∆u+ [m2 − (ω+φ)2]u = f (x,u), x ∈R3,
−∆φ+u2φ=−ωu2, x ∈R3,

(1)

was first introduced in [4] as a model describing the nonlinear Klein–Gordon field interacting
with the electromagnetic field. Later, many authors studied this system and interested in
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the case f (x,u)= |u|p−2u for 2< p ≤ 6 (see [1,2,4–8,10–15,18,21–24]). The other case such as
semiclassical states [22], nonhomogeneous case [5,10] and critical exponent case [6–8,24] are
also studied. Very recently, the authors [9, 11, 16, 17] investigated the existence of solutions
of the problem (KGM). Especially, Li and Tang [19] use the genus properties to obtain the
following theorem.

Theorem 1.1 ([19]). Assume that V and f satisfy the following conditions:

(V) V (x) ∈ C(R3,R), inf
x∈R3

V (x)=V0 > 0 and there exists v0 > 0 such that

lim
|y|→∞

meas{x ∈R3 : |x− y| ≤ v0,V (x)≤ M}= 0 for all M > 0;

(B1) There exist p, σ, γ ∈ (1,2) and ν ∈ (2,6) such that

b(x)|t|p ≤ f (x, t)t and | f (x, t)| ≤ m(x)|t|σ−1 +h(x)|t|γ−1 +C|t|ν−1

for all (x, t) ∈ R3 ×R, where b,m,h : R3 → R are positive continuous functions satisfying
b ∈ L

2
2−p (R3), m ∈ L

2
2−σ (R3), h ∈ L

2
2−γ (R3);

(B2) f (x,−z)=− f (x, z), (x, z) ∈R3 ×R.

Then (KGM) has infinitely many solutions.

The main aim of this paper is to complement Theorem 1.1. We want to study the following
problem{

−∆u+V (x)u− (2ω+φ)φu = K(x) f (x,u), x ∈R3,
∆φ= (ω+φ)u2, x ∈R3.

(2)

Our result is as follows.

Theorem 1.2. Assume that V satisfies (V) and f satisfies (B2) and the following conditions:

( f1) There exist δ> 0, 1≤ γ< 2, C > 0 such that f ∈ C(R3 × [−δ,δ],R) and | f (x, z)| ≤ C|z|γ−1;

( f2) lim
z→0

F(x, z)/|z|2 =+∞ uniformly in some ball Br(x0)⊂R3, where F(x, z)= ∫ z
0 f (x, s)ds;

( f3) K : R3 → R+ is a continuous function such that K > 0 for all x ∈ R3 and K ∈ L
2

2−γ (R3)∩
L∞(R3).

Then (2) has infinitely many solutions {uk} such that ‖uk‖L∞ → 0 as k →∞.

Remark 1.3. It should be noted that the authors [19] had obtained infinitely many solutions
when nonlinearity is sublinear at zero globally. In this paper, if we have a control at infinity,
the nonlinearity can be generalized to partially sublinear and get more information about the
solutions (such as the solutions are convergent to zero in L∞(R3)).

Throughout the paper, we denote by C > 0 various positive constants which may vary from
line to line.
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2. Preliminaries
In this section, we shall give some notations and propositions that will be used throughout this
paper.

For any 1 ≤ s < ∞, Ls(R3) denotes the usual Lebesgue space equipped with the norm
‖u‖s := (∫

R3 |u|sdx
)1/s. H1(R3) is the usual Sobolev space with the norm

‖u‖ :=
(∫
R3

(|∇u|2 +u2)dx
)1/2

,

and the function space

D1,2(R3) := {u ∈ L6(R3) : |∇u| ∈ L2(R3)}

equipped with the norm

‖u‖D1,2 :=
(∫
R3

|∇u|2dx
)1/2

.

In our problem, the function space E is defined by

E :=
{

u ∈ H1(R3) :
∫
R3

(|∇u|2 +V (x)u2)dx <∞
}

.

Thus, E is a Hilbert space with the inner product (u,v)E := ∫
R3(∇u · ∇v+V (x)uv)dx, and its

norm is ‖u‖E = (u,u)1/2
E . Since V (x)≥V0 > 0, the embedding E ,→ Ls(R3) is continuous for any

s ∈ [2,6].

Next, we need the following compactness result proved in [3].

Proposition 2.1. Under the assumption (V ), the embedding E ,→ Lq(R3), 2 ≤ q < 2∗ = 6 is
compact.

Now, we need the following technical results established in [4] (see also [13]).

Proposition 2.2. For any fixed u ∈ H1(R3), there exists a unique φ=φu ∈D1,2(R3) which solves
equation

−∆φ+u2φ=−ωu2. (3)

Moreover, the map Φ : u ∈ H1(R3) 7→Φ[u] :=φu ∈D1,2(R3) is continuously differentiable, and

(i) −ω≤φu ≤ 0 on the set {x|u(x) 6= 0};

(ii) ‖φu‖D1,2 ≤ C‖u‖L2(R3).

To get infinitively many solutions, we show the following theorem established by Liu and
Wang [20] which is an extension of Clark’s theorem.

Theorem 2.3 ([20]). Let X be a Banach space, Ψ ∈ C1(X ,R). Assume Ψ is even and satisfies the
(PS) condition, bounded from below, and Ψ(0)= 0. If for any k ∈N, there exists a k-dimensional
subspace X k of X and ρk > 0 such that sup

X k∩Sρk

Ψ< 0, where Sρ = {u ∈ X |‖u‖ = ρ}, then at least

one of the following conclusions holds.
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(i) There exists a sequence of critical points {uk} satisfying Ψ(uk)< 0 for all k and ‖uk‖→ 0
as k →∞.

(ii) There exists r > 0 such that for any 0< a < r there exists a critical point u such that ‖u‖ = a
and Ψ(u)= 0.

3. Proof of the Main Result
Proof of Theorem 1.2. Firstly, choose f̂ ∈ C(R3 ×R,R) such that f̂ is odd in u ∈R and

f̂ (x,u)=
{

f (x,u), if |u| < δ
2 ,

0, if |u| > δ.

In order to obtain solutions of (2), we now consider the following problem{
−∆u+V (x)u− (2ω+φ)φu = K(x) f̂ (x,u), x ∈R3,
∆φ= (ω+φ)u2, x ∈R3.

(4)

As is known, (4) is variational and its solutions are the critical points of the functional defined
in E by

I(u)= 1
2

∫
R3

(|∇u|2 +V (x)u2 −ωφuu2)dx−
∫
R3

K(x)F̂(x,u)dx,

where F̂(x,u)= ∫ u
0 f̂ (x, s)ds denotes a primitive of f̂ . From ( f1) and ( f3), it is not hard to check

that I is well defined on E and I ∈ C1(E,R) (see [19] for more details). Moreover,

〈I′(u),v〉 =
∫
R3

(∇u ·∇v+V (x)uv− (2ω+φu)φuuv−K(x) f̂ (x,u)v
)
dx, v ∈ E.

Note that I is even, and I(0)= 0. For u ∈ E,∫
R3

K(x)|F̂(x,u)|dx ≤ C
∫
R3

K(x)|u|γdx ≤ C‖K‖
L

2
2−γ (R3)

‖u‖γL2(R3)
≤ C‖u‖γ.

Hence, by Proposition 2.2

I(u)≥ 1
2
‖u‖2 −C‖u‖γ, u ∈ E. (5)

Now, we show that I satisfies the Palais-Smale condition. Let {un} be a Palais-Smale sequence
in E, that is I(un) is bounded and I′(un)→ 0. We will prove that {un} has a strongly convergent
subsequence in E. Due to (5), we get {un} is bounded in E. Going if necessary to a subsequence,
we can assume that un * u weakly in E. By Proposition 2.1, un → u in Lq(R3) for any 2≤ q < 6.
Observe that

‖un −u‖2 = 〈I′(un)−I′(u),un −u〉−
∫
R3

[(2ω+φun)φun un + (2ω+φu)φuu](un −u)dx

+
∫
R3

K(x)( f̂ (x,un)− f̂ (x,u))(un −u)dx

:= I1 + I2 + I3,

where φv is the solution of ∆φ= (ω+φ)v2 established in Proposition 2.2.

It is clear that

I1 → 0, as n →∞. (6)
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Next, we estimate I2. By the Hölder inequality, the Sobolev inequality, and Proposition 2.2, we
have ∣∣∣∣∫

R3
(φun −φu)un(un −u)dx

∣∣∣∣≤ ‖φun −φu‖L6(R3)‖un −u‖L3(R3)‖un‖L2(R3)

≤ C‖∇(φun −φu)‖L2(R3)‖un −u‖L3(R3)‖un‖L2(R3)

≤ C
(‖un‖L2(R3) +‖u‖L2(R3)

)‖un‖L2(R3)‖un −u‖L3(R3)

≤ C‖un −u‖L3(R3).

So, we get∫
R3

(φun −φu)un(un −u)dx → 0, as n →∞
and ∣∣∣∣∫

R3
φu(un −u)(un −u)dx

∣∣∣∣≤ ‖φu‖L6(R3)‖un −u‖L3(R3)‖un −u‖L2(R3)

≤ C‖∇φu‖L2(R3)‖un −u‖L3(R3)‖un −u‖L2(R3)

≤ C‖u‖L2(R3)‖un −u‖L3(R3)‖un −u‖L2(R3)

→ 0, as n →∞.

Consequently, we have∫
R3

(φun un +φuu)(un −u)dx =
∫
R3

(φun −φu)un(un −u)dx+
∫
R3
φu(u−un)(un −u)dx

→ 0, as n →∞. (7)

By the Hölder inequality and Proposition 2.2 again, we obtain

‖φ2
un

un‖L
3
2 (R3)

≤ ‖φun‖2
L6(R3)‖un‖L3(R3)

≤ ‖∇φun‖2
L2(R3)‖un‖L3(R3)

≤ ‖un‖2
L2(R3)‖un‖L3(R3)

≤ C.

This shows that the sequence {φ2
un

un} is bounded in L
3
2 (R3). Then we obtain∣∣∣∣∫

R3
(φ2

un
un +φ2

uu)(un −u)dx
∣∣∣∣≤ ‖φ2

un
un +φ2

uu‖
L

3
2 (R3)

‖un −u‖L3(R3)

≤
(
‖φ2

un
un‖L

3
2 (R3)

+‖φ2
uu‖

L
3
2 (R3)

)
‖un −u‖L3(R3)

≤ C‖un −u‖L3(R3)

→ 0, as n →∞. (8)

Therefore, from (7)–(8) we show that

I2 → 0, as n →∞. (9)

Last, we estimate I3. By ( f1), for any R > 0, there holds∫
R3

K(x)| f̂ (x,un)− f̂ (x,u)||un −u|dx
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≤ C
∫
R3\BR (0)

K(x)(|un|γ+|u|γ)dx+C
∫

BR (0)
(|un|γ−1 +|u|γ−1)|un −u|dx

≤ C
(
‖un‖γL2(R3\BR (0))

+‖u‖γL2(R3\BR (0))

)
‖K‖

L
2

2−γ (R3\BR (0))

+C
(
‖un‖γ−1

Lγ(BR (0)) +‖u‖γ−1
Lγ(BR (0))

)
‖un −u‖Lγ(BR (0))

≤ C‖K‖
L

2
2−γ (R3\BR (0))

+C‖un −u‖Lγ(BR (0)).

this implies

lim
n→∞

∫
R3

K(x)| f̂ (x,un)− f̂ (x,u)||un −u|dx = 0, as n →∞.

Hence

I3 → 0, as n →∞. (10)

Combining (6), (9), and (10) together, we get that {un} converges strongly in E and thus the
Palais-Smale condition holds for I.

By ( f2) and ( f3), for any L > 0, there exists δ = δ(L) > 0 such that if u ∈ C∞
0 (Br(x0)) and

|u|∞ < δ, then K(x)F̂(x,u(x))≥ L|u(x)|2, and it follows from Proposition 2.2 that

I(u)≤ 1
2
‖u‖2 + 1

4
‖u‖4 −L‖u‖2

L2(R3).

This shows that for any k ∈ N, if X k is a k-dimensional subspace of C∞
0 (Br(x0)) and ρk is

sufficiently small then sup
X k∩Sρk

I(u)< 0, where Sρ = {u ∈R3|‖u‖ = ρ}. Now, we can apply Theorem

2.3 to obtain infinitely many solutions {uk} for (4) such that

‖uk‖→ 0, k →∞. (11)

Finally, we get ‖uk‖L∞ → 0 as k →∞. Let u be a solution of (4). Let M > 0 and define

uM(x) :=


−M, if u(x)<−M,
u(x), if |u(x)| ≤ M,
M, if u(x)> M.

For α> 0, it is easy to see that |uM |αuM ∈ E. Then multiplying (4)1 by |uM |αuM and integration
by parts, we have∫

R3

[
(α+1)|uM |α∇u ·∇uM +V (x)u|uM |αuM

]
dx

=
∫
R3

(2ω+φ)φu|uM |αuMdx+
∫
R3

K(x) f̂ (x,u)|uM |αuMdx. (12)

Due to the definition of uM and Proposition 2.2 (i), it follows that∫
R3

(2ω+φ)φu|uM |αuMdx =
∫

{u 6=0}
(2ω+φ)φu|uM |αuMdx ≤ 0. (13)

Substituting (13) into (12), this shows∫
R3

[
(α+1)|uM |α∇u ·∇uM +V (x)u|uM |αuM

]
dx ≤

∫
R3

K(x) f̂ (x,u)|uM |αuMdx,
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and we get
4(α+1)
(α+2)2

∫
R3

|∇|uM |α2 +1|2dx ≤ C
∫
R3

|uM |α+1dx.

Together with Gagliardo-Nirenberg-Sobolev inequality, it follows that

‖uM‖L3α+6(R3) ≤ (C1(α+2))
2

α+2 ‖uM‖
α+1
α+2
Lα+1(R3)

(14)

for some C1 ≥ 1 independent of u and α. Set α0 = 5 and αk = 3(αk−1 +2)−1. Doing iteration by
(14), it follows that

‖uM‖Lαk+1+1(R3) ≤ exp

(
k∑

i=0

2ln(C1(αi +2))
αi +2

)
‖uM‖µk

L6(R3)
, (15)

where µk =
k∏

i=0

αi+1
αi+2 . Letting M to infinity and then k to infinity, we obtain from (15) that

‖u‖L∞(R3) ≤ exp

( ∞∑
i=0

2ln(C1(αi +2))
αi +2

)
‖u‖µL6(R3)

,

where µ=
∞∏

i=0

αi+1
αi+2 is a number in (0,1) and exp

( ∞∑
i=0

2ln(C1(αi+2))
αi+2

)
is a positive number. Therefore,

we obtain that ‖uk‖L∞(R3) → 0 as k →∞, and uk are the solutions of (2) as k sufficiently large.
This complete the proof.

4. Conclusion
In this paper, we consider a class of Klein-Gordon-Maxwell system with partial sublinear
nonlinearity, which improved the previous work.
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