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1. Introduction
Fractional calculus, including integrals and derivatives of arbitrary order, is a generalization
of classical integer-order differentiation and integration [19]. By using fractional calculus,
some models in different branches of science and engineering such as fluid mechanics, electric
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network, signal processing, control theory of dynamical system, image processing, optics,
visco-elasticity [10,11,17,20–22] can be described more reasonably and applicably. To find an
approximate or analytical solutions of nonlinear fractional partial differential equations various
methods are available in our literature like Adomian’s decomposition methods [18], Laplace
decomposition method [26], homotopy perturbation method [13], homotopy analysis method
[1,25], homotopy analysis transform method [12,14] and Differential transform method [23].
Among these, Residual Power Series Method (RPSM) is a new algorithm. RPSM (proposed by
the Jordan mathematician Arqub [5]) was developed as an efficient method for determining
values of coefficients of the power series solution for fuzzy differential equations. This method is
based on constructing power series expansion solution for different nonlinear equations without
linearization, perturbation, or discretization [2–4, 6–9, 15, 16, 24]. With the help of residual
error concepts, this method computes the coefficient of the power series by a chain of algebraic
equations of one or more variables and finally we get a series solution, in practice a truncated
series solution. The main advantage of this method over the other method is it can be applied
directly to the given problem by choosing an appropriate initial guess approximation.

2. Preliminaries
We first give the main definitions and various features of the fractional calculus theory in this
section.

Definition 1. The Riemann-Liouville fractional integral operator of order α (α≥ 0) is defined as

Jα f (x)= 1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α> 0, x > 0 ,

J0 f (x)= f (x) .

Definition 2. The Caputo fractional derivatives of order α are defined as

Dα f (x)= Jm−αDm f (x)= 1
Γ(m−α)

∫ x

0
(x− t)m−α−1 f (m)(t)dt, m−1<α≤ m, x > 0 ,

where Dm is the classical differential operator of order m.
For the Caputo derivative, we have

Dαxβ = 0, β<α ,

Dαxβ = Γ(β+1)
Γ(β+1−α)

xβ−α, β≥α .

Definition 3. Let n be the smallest integer greater than α, the Caputo time fractional
derivative operator of order α of u(x, t) is defined as [2,3,7–9,15,16,24]

Dα
t u(x, t)= ∂αu(x, t)

∂tα
=


1

Γ(n−α)
∫ t

0 (t−τ)n−α−1 ∂nu(x,τ)
∂tn dτ, n−1<α≤ n

∂nu(x,t)
∂tn , α= n ∈ N

and the space fractional derivative of order β of u(x, t) is defined as

Dβ
x u(x, t)= ∂βu(x, t)

∂xβ
=


1

Γ(n−β)
∫ x

0 (x−τ)n−β−1 ∂nu(x,τ)
∂xn dτ, n−1<β≤ n

∂nu(x,t)
∂xn , β= n ∈ N .
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Definition 4. The power series expansions about t = t0 and x = x0
∞∑

k=0

m−1∑
l=0

fkl(x)(t− t0)kα+l , 0≤ m−1<α≤ m, t ≥ t0

and
∞∑

k=0

n−1∑
l=0

gkl(t)(x− x0)kα+l , 0≤ n−1<α≤ n, x ≥ x0

are called multiple fractional power series, where fkl(x) and gkl(t) are called the coefficients of
the series.

3. Construction of RPSM for Space-time FPDE
Case A. Consider the following space-time FPDE

Dα
t u = Dβ

x u+ f (x), m−1<α≤ m, n−1<β≤ n (1)

subject to the initial condition

u(x,0)=ϕ(x) . (2)

Applying the transformation

u(x, t)= D2−β
x v(x, t)− Iβx f (x) (3)

then we have

Dα
t (D2−β

x v)= Dxxv , (4)

v(x,0)= Dβ−2
x ϕ(x)+ I2

x f (x) . (5)

Our purpose is to construct a power series solution for eqs. (4) and (5) by its power series
expansion among its truncated residual function. The main steps of this procedure are shown
as follows:
Step 1. Suppose that the solution of eqs. (4) and (5) is expressed in the form of fractional power
series expansion about the initial point t = 0 as follows:

v(x, t)=
∞∑

i=0

m−1∑
j=0

f i j(x)
tiα+ j

Γ(1+ iα+ j)
, m−1<α≤ m, x ∈ R, t ≥ 0 .

The RPSM guarantees that the analytical approximate solution for eqs. (4) and (5) are in the
form of an infinite multiple fractional power series. To get the numerical values from this series,
let vkl(x, t) denotes the (k, l)-truncated series of v(x, t). That is,

vkl(x, t)=
k∑

i=0

l∑
j=0

f i j(x)
tiα+ j

Γ(1+ iα+ j)
, m−1<α≤ m, x ∈ R, t ≥ 0 .

Take the initial condition, the residual power series approximate solution of v(x, t) can be
written in the following form:

v00(x, t)= f00(x)= v(x,0)= Dβ−2
x ϕ(x)+ I2

x f (x) .

As a result, we can reformulate the expansion form as

vkl(x, t)= Dβ−2
x ϕ(x)+ I2

x f (x)+
k∑

i=1

l∑
j=0

f i j(x)
tiα+ j

Γ(1+ iα+ j)
, m−1<α≤ m, x ∈ R, t ≥ 0
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where k = 1,2,3, . . . and l = 0,1,2, . . . ,m−1.

Step 2. Define the residual function for eqs. (4) and (5) as follows:

Res(x, t)= Dα
t (D2−β

x v(x, t))−Dxxv(x, t)

and the (k, l)-truncated residual function can be expressed as

Reskl(x, t)= Dα
t (D2−β

x vkl(x, t))−Dxxvkl(x, t) .

As in [2,3,7–9,15,16,24], some useful results in the residual power series solution are stated as
follows:

(1) Res(x, t)= 0

(2) lim
k→∞

Resk(x, t)=Res(x, t)

(3) D(i−1)α
t D j

t Res(x,0)= D(i−1)α
t D j

t Resi j(x,0)= 0, i = 1,2,3, . . . ,k, j = 0,1,2, . . . , l

Step 3. Substitute the (k, l)-truncated series of v(x, t) into Reskl(x, t) and calculate the fractional
derivative at t = 0, the following algebraic system is obtained:

D(k−1)α
t D l

t Reskl(x,0)= 0, m−1<α≤ m, k = 1,2,3, . . . , l = 0,1,2, . . . ,m−1

Step 4. After solving the above system, the values of the coefficients f i j(x), i = 1,2,3, . . . ,k,
j = 0,1,2, . . . , l are obtained. Thus, the (k, l) residual power series approximate solution is
derived.

In the next discussion, the residual power series approximate solutions are determined by
the following the above steps for m = 1.

To determine form of the first unknown coefficient f10(x), we should substitute the (1,0)-
truncated series

v10(x, t)= Dβ−2
x ϕ(x)+ I2

x f (x)+ f10(x)
tα

Γ(1+α)
into the (1,0)-truncated residual function

Res10(x, t)= Dα
t (D2−β

x v10(x, t))−Dxxv10(x, t) .

Then, we have

Res10(x, t)= D2−β
x f10(x)−Dβ

xϕ(x)− f ′′10(x)
tα

Γ(1+α)
.

From Step 3 of Case A, the substituting of t = 0 back into Res10(x, t) will yields

f10(x)= D2β−2
x ϕ(x)+ I2−β

x f (x).

Again, to find out form of the second unknown coefficient f20(x), we substitute the (2,0)-
truncated series solution

v20(x, t)= Dβ−2
x ϕ(x)+ I2

x f (x)+ (
D2β−2

x ϕ(x)+ I2−β
x f (x)

) tα

Γ(1+α)
+ f20(x)

t2α

Γ(1+2α)
into the (2,0)-truncated residual function

Res20(x, t)= Dα
t (D2−β

x v20(x, t))−Dxxv20(x, t)

Then, we obtain

Res20(x, t)= Dβ
xϕ(x)+ f (x)+D2−β

x f20(x)
tα

Γ(1+α)
−Dβ

xϕ(x)− f (x)
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− (
D2β

x ϕ(x)+Dβ
x f (x)

) tα

Γ(1+α)
− f ′′20(x)

t2α

Γ(1+2α)
.

From Step 3 of Case A, we have Dα
t Res20(x,0)= 0. Solving the resulting equation for f20(x), we

have

f20(x)= D3β−2
x ϕ(x)+ I2−2β

x f (x).

Therefore, collecting the previous results, the RPS solution of eqs. (4) and (5) can be constructed
in the form of fractional power series as follows:

v(x, t)= Dβ−2
x ϕ(x)+ I2

x f (x)+ (
D2β−2

x ϕ(x)+ I2−β
x f (x)

) tα

Γ(1+α)

+ (
D3β−2

x ϕ(x)+ I2−2β
x f (x)

) t2α

Γ(1+2α)
+ (

D4β−2
x ϕ(x)+ I2−3β

x f (x)
) t3α

Γ(1+3α)
+ . . . .

Again, applying the transformation (3), we obtain

u(x, t)=ϕ(x)+ (
Dβ

xϕ(x)+ f (x)
) tα

Γ(1+α)
+ (

D2β
x ϕ(x)+Dβ

x f (x)
) t2α

Γ(1+2α)

+ (
D3β

x ϕ(x)+D2β
x f (x)

) t3α

Γ(1+3α)
+ . . . .

Case B. Consider the following space-time FPDE

Dα
t u = Dβ

x u+ g(t), m−1<α≤ m, n−1<β≤ n (6)

subject to the nonhomogeneous initial condition

u(0, t)=µ1(t), ux(0, t)=µ2(t) . (7)

Applying the transformation

u(x, t)= D1−α
t v(x, t)+ Iαt g(t) (8)

then, we have

Dtv = Dβ
x (D1−α

t v) , (9)

v(0, t)= Dα−1
t µ1(t)− I t g(t), vx(0, t)= Dα−1

t µ2(t) . (10)

The main steps to construct the residual power series solution for eqs. (9) and (10) are shown as
follows:

Step 1. Suppose that the solution of eqs. (9) and (10) is expressed in the form of fractional power
series expansion about the initial point x = 0 as follows:

v(x, t)=
∞∑

i=0

n−1∑
j=0

g i j(t)
xiβ+ j

Γ(1+ iβ+ j)
, n−1<β≤ n, t ∈ R, x ≥ 0 .

The RPSM guarantees that the analytical approximate solution for eqs. (9) and (10) are in the
form of an infinite multiple fractional power series. To get the numerical values from this series,
let vkl(x, t) denotes the (k, l)-truncated series of v(x, t). That is,

vkl(x, t)=
k∑

i=0

l∑
j=0

g i j(t)
xiβ+ j

Γ(1+ iβ+ j)
, n−1<β≤ n, t ∈ R, x ≥ 0 .
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Take the nonhomogeneous initial condition, the residual power series approximate solution of
v(x, t) can be written in the following form:

v01(x, t)= g00(t)+ g01(t)x = v(0, t)+vx(0, t)x = Dα−1
t µ1(t)− I t g(t)+Dα−1

t µ2(t)x

As a result, we can reformulate the expansion form as

vkl(x, t)= Dα−1
t µ1(t)− I t g(t)+Dα−1

t µ2(t)x+
k∑

i=1

l∑
j=0

g i j(t)
xiβ+ j

Γ(1+ iβ+ j)
, n−1<β≤ n, t ∈ R, x ≥ 0

where k = 1,2,3, . . . and l = 0,1,2, . . . ,n−1.

Step 2. Define the residual function for eqs. (9) and (10) as follows:

Res(x, t)= Dtv(x, t)−Dβ
x (D1−α

t v(x, t))

and the (k, l)-truncated residual function can be expressed as

Reskl(x, t)= Dtvkl(x, t)−Dβ
x (D1−α

t vkl(x, t))

As in [2,3,7–9,15,16,24], some useful results in the residual power series solution are stated as
follows:

(1) Res(x, t)= 0

(2) lim
k→∞

Resk(x, t)=Res(x, t)

(3) D(i−1)β
x D j

x Res(0, t)= D(i−1)β
x D j

x Resi j(0, t)= 0, i = 1,2,3, . . . ,k, j = 0,1,2, . . . , l

Step 3. Substitute the (k, l)-truncated series of v(x, t) into Reskl(x, t) and calculate the fractional
derivative at x = 0, the following algebraic system is obtained:

D(k−1)α
x D l

x Reskl(0, t)= 0, n−1<β≤ n, k = 1,2,3, . . . , l = 0,1,2, . . . ,n−1 .

Step 4. After solving the above system, the values of the coefficients g i j(t), i = 1,2,3, . . . ,k,
j = 0,1,2, . . . , l are obtained. Thus, the (k, l) residual power series approximate solution is
derived.

In the next discussion, the residual power series approximate solutions are determined by
the following the above steps for n = 2.

To determine form of the first unknown coefficient g10(t), we should substitute the (1,0)-
truncated series

v10(x, t)= Dα−1
t µ1(t)− I2

t g(t)+Dα−1
t µ2(t)x+ g10(t)

xβ

Γ(1+β)
into the (1,0)-truncated residual function

Res10(x, t)= Dtv10(x, t)−Dβ
x (D1−α

t v10(x, t)) .

Then, we have

Res10(x, t)= Dα
t µ1(t)− I2

t g(t)+Dα
t µ2(t)x+ g′

10(t)
xβ

Γ(1+β)
−D1−α

t g10(t) .

From Step 3 of Case B, the substituting of x = 0 back into Res10(x, t) will yields

g10(t)= D2α−1
t µ1(t)− I3−α

t g(t).
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Again, to find out form of the second unknown coefficient g11(t), we substitute the (1,1)-
truncated series solution

v11(x, t)= Dα−1
t µ1(t)− I t g(t)+Dα−1

t µ2(t)x+ (
D2α−1

t µ1(t)− I3−α
t g(t)

) xβ

Γ(1+β)
+ g11(t)

x1+β

Γ(2+β)
into the (1,1)-truncated residual function

Res11(x, t)= Dtv11(x, t)−Dβ
x (D1−α

t v11(x, t)) .

Then, we obtain

Res11(x, t)= Dα
t µ1(t)− I2

t g(t)+Dα−1
t µ2(t)x

(
D2α

t µ1(t)− I4−α
t g(t)

) xβ

Γ(1+β)
+ g′

11(t)
x1+β

Γ(2+β)
−Dα

t µ1(t)+ I2
t g(t)−D1−α

t g11(t)x .

From Step 3 of Case B, we have Dx Res11(0, t)= 0. Solving the resulting equation for g11(t), we
have g11(t)= D2α−1

t µ2(t).
Therefore, collecting the previous results, the RPS solution of eqs. (9) and (10) can be

constructed in the form of fractional power series as follows:

v(x, t)= Dα−1
t µ1(t)− I t g(t)+Dα−1

t µ2(t)x+ (
D2α−1

t µ1(t)− I3−α
t g(t)

) xβ

Γ(1+β)

+D2α−1
t µ2(t)

x1+β

Γ(2+β)
+ (

D3α−1
t µ1(t)− I5−2α

t g(t)
) x2β

Γ(1+2β)
+ . . . .

Again, applying the transformation (8), we obtain

u(x, t)=µ1(t)+µ2(t)x+ (
Dα

t µ1(t)− I2
t g(t)

) xβ

Γ(1+β)

+Dα
t µ2(t)

x1+β

Γ(2+β)
+ (

D2α
t µ1(t)− I4−α

t g(t)
) x2β

Γ(1+2β)
+ . . . .

4. Numerical Results
Example 1. Consider the following space-time FPDE

Dα
t u = Dβ

x u+1−6x, 0<α≤ 1, 1<β≤ 2 , (11)

u(x,0)= ex + x3 . (12)

Applying the transformation (3), we have

Dα
t (D2−β

x v)= Dxxv , (13)

v(x,0)=
∞∑

k=0

xk−β+2

Γ(k−β+3)
+Γ(4)

x5−β

Γ(6−β)
+ x2

2
− x3 . (14)

To determine form of the first unknown coefficient f10(x), we substitute the (1,0)-truncated
series of

v10(x, t)=
∞∑

k=0

xk−β+2

Γ(k−β+3)
+Γ(4)

x5−β

Γ(6−β)
+ x2

2
− x3 + f10(x)

tα

Γ(1+α)
into the (1,0)-truncated residual function to get the following result:

Res10(x, t)= D2−β
x f10(x)−

∞∑
k=0

xk−β

Γ(k−β+1)
−Γ(4)

x3−β

Γ(4−β)
−1+6x− f ′′10(x)

tα

Γ(1+α)
.
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Depending on the result of Step 3 of Case A, we have

f10(x)=
∞∑

k=0

xk−2β+2

Γ(k−2β+3)
+Γ(4)

x5−2β

Γ(6−2β)
+ x2−β

Γ(3−β)
−6

x3−β

Γ(4−β)
.

Similarly, to find out form of the second unknown coefficient f20(x), we substitute the (2,0)-
truncated series solution of eqs. (13) and (14) into the (2,0)-truncated residual function to
obtain

Res20(x, t)=
∞∑

k=0

xk−β

Γ(k−β+1)
+Γ(4)

x3−β

Γ(4−β)
+1−6x+D2−β

x f20(x)
tα

Γ(1+α)

−
( ∞∑

k=0

xk−2β

Γ(k−2β+1)
+Γ(4)

x3−2β

Γ(4−2β)
+ x−β

Γ(1−β)
−6

x1−β

Γ(2−β)

)
tα

Γ(1+α)

− f ′′20(x)
t2α

Γ(1+2α)
.

Hence, the application of the operator Dα
t on both sides of above equation will gives the first

Caputo derivative of Res20(x, t) with respect to t as

Dα
t Res20(x, t)=D2−β

x f20(x)−
∞∑

k=0

xk−2β

Γ(k−2β+1)
−Γ(4)

x3−2β

Γ(4−2β)
− x−β

Γ(1−β)
+6

x1−β

Γ(2−β)
− f ′′20(x)

tα

Γ(1+α)
.

From Dα
t Res20(x,0)= 0, we obtain

f20(x)=
∞∑

k=0

xk−3β+2

Γ(k−3β+3)
.

Therefore, the RPS solution of eqs. (13) and (14) can be constructed as follows:

v(x, t)=
∞∑

k=0

xk−β+2

Γ(k−β+3)
+Γ(4)

x5−β

Γ(6−β)
+ x2

2
− x3

+
( ∞∑

k=0

xk−β+2

Γ(k−β+3)
+Γ(4)

x5−2β

Γ(6−2β)
+ x2−β

Γ(3−β)
−6

x3−β

Γ(4−β)

)
tα

Γ(1+α)

+
∞∑

k=0

xk−3β+2

Γ(k−3β+3)
t2α

Γ(1+2α)
+ . . . .

Applying the transformation (3), we obtain

u(x, t)=
∞∑

k=0

xk

Γ(k+1)
+ x3 +

( ∞∑
k=0

xk−β

Γ(k−β+1)
+Γ(4)

x3−β

Γ(4−β)
+1−6x

)
tα

Γ(1+α)

+
∞∑

k=0

xk−2β

Γ(k−2β+1)
t2α

Γ(1+2α)
+ . . . .

As a special case when α= 1 and β= 2, the RPS solution of eqs. (11) and (12) has the general
pattern form which is coinciding with the exact solution in terms of fractional power series
u(x, t)= ex+t+x3+ t. To show this accuracy for Example 1, we report the consecutive error which
is defined by Res(x, t), where x, t ≥ 0 and ui j is the (i, j)-truncated series of u(x, t) obtained from
the RPS method. In Table 1, the numerical values of residual errors have been calculated when
(α= 1,β= 2), (α= 0.75,β= 1.75), (α= 0.5,β= 1.5), (α= 0.25,β= 1.25) and for various x and t.
The computational results of tables provide a numerical estimate for the convergence of the
RPS method.
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Table 1. The residual errors for u30(x, t) of Example 1

x t α= 1 α= 0.75 α= 0.5 α= 0.25

β= 2 β= 1.75 β= 1.5 β= 1.25

0.2 −0.10 0.00020 −0.29438 −1.87786 −5.75598

−0.05 0.00003 −0.23420 −1.93893 −5.57721

0.05 −0.00003 −0.12819 −1.66489 −5.41935

0.10 −0.00020 −0.71793 −2.97769 −6.87618

0.4 −0.10 0.00023 −0.42845 −1.85083 −5.48856

−0.05 0.00003 −0.34520 −1.92541 −5.07227

0.05 −0.00003 −0.12263 −1.84835 −6.09028

0.10 −0.00023 −0.74493 −3.06425 −7.31811

0.6 −0.10 0.00027 −0.49516 −1.81787 −5.58063

−0.05 0.00003 −0.34235 −1.90894 −5.12981

0.05 −0.00003 0.15034 −1.38859 −5.89703

0.10 −0.00027 −0.50263 −2.67907 −7.30404

0.8 −0.10 0.00030 −0.44924 −1.77780 −6.06194

−0.05 0.00004 −0.20592 −1.88892 −5.77021

0.05 −0.00004 0.61653 −0.38050 −4.83443

0.10 −0.00030 −0.11484 −1.93814 −6.83626

Example 2. Consider the following space-time FPDE

Dα
t u = Dβ

x u+ g(t), 0<α≤ 1, 1<β≤ 2 (15)

subject to the nonhomogeneous initial condition

u(0, t)= et + t2, ux(0, t)= et . (16)

Applying the transformation (8), then we have

Dtv = Dβ
x (D1−α

t v) , (17)

v(0, t)=
∞∑

k=0

tk−α+1

Γ(k−α+2)
+Γ(3)

t3−α

Γ(4−α)
− t2 +2t, vx(0, t)=

∞∑
k=0

tk−α+1

Γ(k−α+2)
. (18)

To determine form of the first unknown coefficient g10(t), we substitute the (1,0)-truncated
series of

v10(x, t)=
∞∑

k=0

tk−α+1

Γ(k−α+2)
+Γ(3)

t3−α

Γ(4−α)
− t2 +2t+

∞∑
k=0

tk−α+1

Γ(k−α+2)
x+ g10(t)

xβ

Γ(1+β)
into the (1,0)-truncated residual function to get the following result:

Res10(x, t)=
∞∑

k=0

tk−α

Γ(k−α+1)
+Γ(3)

t2−α

Γ(3−α)
−2t+2+

∞∑
k=0

tk−α

Γ(k−α+1)
x+ g′

10(t)
xβ

Γ(1+β)
−D1−α

t g10(t) .

Depending on the result of Step 3 of Case A, we have

g10(t)=
∞∑

k=0

tk−2α+1

Γ(k−2α+2)
+Γ(3)

t3−2α

Γ(4−2α)
−2

x2−α

Γ(3−α)
+2

t1−α

Γ(2−α)
.
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Similarly, to find out form of the second unknown coefficient g11(t), we substitute the (1,1)-
truncated series solution of eqs. (17) and (18) into the (1,1)-truncated residual function to
obtain

Res11(x, t)=
∞∑

k=0

tk−α

Γ(k−α+1)
+Γ(3)

t2−α

Γ(3−α)
−2t+2+

∞∑
k=0

tk−α

Γ(k−α+1)
x

+
( ∞∑

k=0

tk−2α

Γ(k−2α+1)
+Γ(3)

t2−2α

Γ(3−2α)
−2

t1−α

Γ(2−α)
+2

t−α

Γ(1−α)

)
xβ

Γ(1+β)

+ g′
11(t)

x1+β

Γ(2+β)
−

∞∑
k=0

tk−α

Γ(k−α+1)
−Γ(3)

t2−α

Γ(3−α)
+2t−2−D1−α

t g11(t)x .

Hence, the application of the operator Dx on both sides of above equation will gives the first
partial derivative of Res11(x, t) with respect to x as

Dx Res11(x, t)=
∞∑

k=0

tk−α

Γ(k−α+1)
+

( ∞∑
k=0

tk−2α

Γ(k−2α+1)
+Γ(3)

t2−2α

Γ(3−2α)
−2

t1−α

Γ(2−α)
+2

t−α

Γ(1−α)

)
xβ−1

Γ(β)

+ g′
11(t)

xβ

Γ(1+β)
−D1−α

t g11(t) .

From Dx Res11(0, t)= 0, we obtain g11(t)=
∞∑

k=0

xk−2α+1

Γ(k−2α+2) .

Therefore, the RPS solution of eqs. (17) and (18) can be constructed as follows:

v(x, t)=
∞∑

k=0

tk−α+1

Γ(k−α+2)
+Γ(3)

t3−α

Γ(4−α)
− t2 +2t+

∞∑
k=0

tk−α+1

Γ(k−α+2)
x

+
( ∞∑

k=0

tk−α+1

Γ(k−α+2)
+Γ(3)

t3−2α

Γ(4−2α)
−2

x2−α

Γ(3−α)
+2

t1−α

Γ(2−α)

)
xβ

Γ(1+β)

+
∞∑

k=0

tk−2α+1

Γ(k−2α+2)
x1+β

Γ(2+β)
+ . . . .

Applying the transformation (8), we obtain

u(x, t)=
∞∑

k=0

tk

Γ(k+1)
+ t2 +

∞∑
k=0

tk

Γ(k+1)
x+

( ∞∑
k=0

tk−α

Γ(k−α+1)
+Γ(3)

t2−α

Γ(3−α)
−2t+2

)
xβ

Γ(1+β)

+
∞∑

k=0

tk−α

Γ(k−α+1)
x1+β

Γ(2+β)
+ . . .

As a special case when α= 1 and β= 2, the RPS solution of eqs. (15) and (16) has the general
pattern form which is coinciding with the exact solution in terms of fractional power series
u(x, t) = ex+t + x2 + t2. To show this accuracy for Example 2, we report the consecutive error
which is defined by Res(x, t), where x, t ≥ 0 and ui j is the (i, j)-truncated series of u(x, t) obtained
from the RPS method. In Table 2, the numerical values of residual errors have been calculated
when (α= 1,β= 2), (α= 0.75,β= 1.75), (α= 0.5,β= 1.5), (α= 0.25,β= 1.25) and for various x
and t. The computational results of tables provide a numerical estimate for the convergence of
the RPS method.
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Table 2. The residual errors for u11(x, t) of Example 2

x t α= 1 α= 0.75 α= 0.5 α= 0.25

β= 2 β= 1.75 β= 1.5 β= 1.25

0.2 −0.10 0.01930 −0.20867 0.17579 1.10393

−0.05 0.02029 −0.03937 0.35762 1.22312

0.05 0.02243 0.14285 0.48423 1.33477

0.10 0.02358 0.02985 0.39222 1.32800

0.4 −0.10 0.08204 0.20439 0.92362 1.89431

−0.05 0.08624 0.27804 1.07778 2.06049

0.05 0.09532 0.95680 1.67295 2.37035

0.10 0.10020 0.76413 1.51965 2.35059

0.6 −0.10 0.19544 0.29706 1.14610 2.19894

−0.05 0.20547 0.22797 1.29317 2.44497

0.05 0.22707 1.70841 2.55196 3.01160

0.10 0.23872 1.38091 2.30026 2.97507

0.8 −0.10 0.36676 0.22055 1.16445 2.37687

−0.05 0.38556 −0.04683 1.31103 2.72308

0.05 0.42612 2.55772 3.42849 3.59591

0.10 0.44796 2.03976 3.04443 3.53650

5. Conclusion
The fundamental goal of this work has been to demonstrate the feasibility of the RPSM
for solving time-space non-homogeneous partial differential equations in the Caputo sense.
The above results and all of the discussed examples reveal that the goal has been achieved
successfully. As a result RPSM can be used as an significant method to obtain analytical
solutions of non-homogeneous partial differential equations arising in different branches of
science.
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