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Department of Mathematics, Erciyes University, 38039 Kayseri, TURKEY
*Corresponding author: ahmetkarakas1985@hotmail.com

Abstract. In this paper, we have generalized a known theorem on |N̄, pn|k summability factors
of infinite series with a new summability method by using almost increasing sequences. This new
theorem also includes several new and known results.

Keywords. Summability factors; Absolute matrix summability; Almost increasing sequence; Infinite
series; Hölder inequality; Minkowski inequality

MSC. 26D15; 40D15; 40F05; 40G99

Received: March 2, 2017 Accepted: March 25, 2019
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1. Introduction
A positive sequence (bn) is said to be almost increasing if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Obviously
every increasing sequence is almost increasing sequence but the converse need not be true as
can be seen from the example bn = ne(−1)n

. Let
∑

an be a given infinite series with partial sums
(sn). Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0
pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1.1)

The sequence-to-sequence transformation

σn = 1
Pn

n∑
v=0

pvsv (1.2)
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defines the sequence (σn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn),
generated by the sequence of coefficients (pn) (see [8]). The series

∑
an is said to be summable

|N̄, pn|k, k ≥ 1, if (see [6])
∞∑

n=1

(
Pn

pn

)k−1
|σn −σn−1|k <∞, (1.3)

and it is said to be summable |N̄, pn,β;δ|k, k ≥ 1, δ≥ 0 and β is a real number, if (see [7])
∞∑

n=1

(
Pn

pn

)β(δk+k−1)
|σn −σn−1|k <∞. (1.4)

If we take β = 1, then |N̄, pn,β;δ|k summability reduces to |N̄, pn;δ|k summability (see [5]).
Also, if we take β= 1 and δ= 0, then |N̄, pn,β;δ|k summability reduces to |N̄, pn|k summability.

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s)=
n∑

v=0
anvsv, n = 0,1, . . . (1.5)

The series
∑

an is said to be summable |A, pn|k,k ≥ 1, if (see [12])
∞∑

n=1

(
Pn

pn

)k−1
|∆̄An(s)|k <∞. (1.6)

We say that the series
∑

an is summable |A, pn,β;δ|k, k ≥ 1, δ≥ 0 and β is a real number, if
∞∑

n=1

(
Pn

pn

)β(δk+k−1)
|∆̄An(s)|k <∞, (1.7)

where

∆̄An(s)= An(s)− An−1(s). (1.8)

If we take β = 1, then |A, pn,β;δ|k summability reduces to |A, pn;δ|k summability (see [10]).
Also, if we take β= 1 and δ= 0, then |A, pn,β;δ|k summability reduces to |A, pn|k summability.

Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =
n∑

i=v
ani, n,v = 0,1, . . . (1.9)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1,2, . . . . (1.10)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

An(s)=
n∑

v=0
anvsv =

n∑
v=0

ānvav (1.11)

and

∆̄An(s)=
n∑

v=0
ânvav. (1.12)
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2. Known Result
In [3], Bor has proved the following theorem for |N̄, pn|k summability factors of infinite series.

Theorem 2.1. Let (Xn) be an almost increasing sequence and let there be sequences (βn) and
(λn) such that

|∆λn| ≤βn, (2.1)

βn → 0 as n →∞, (2.2)
∞∑

n=1
n|∆βn|Xn <∞, (2.3)

|λn|Xn =O(1) (2.4)

and
n∑

v=1

|tv|k
v

=O(Xn) as n →∞, (2.5)

where (tn) is the n-th (C,1) mean of the sequence (nan). Suppose further, the sequence (pn) is
such that

Pn =O(npn), (2.6)

Pn∆pn =O(pn pn+1), (2.7)

then the series
∞∑

n=1
an

Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.

Remark 2.2. It should be noted that, from the hypotheses of Theorem 2.1, (λn) is bounded and
∆λn =O(1/n) (see [2]).

3. Main Result
The aim of this paper is to generalize Theorem 2.1 for absolute matrix summability.

Now, we shall prove the following theorem:

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0,1, . . . , (3.1)

an−1,v ≥ anv, for n ≥ v+1, (3.2)

ann =O
(

pn

Pn

)
, (3.3)

|ân,v+1| =O(v|∆v(ânv)|). (3.4)

Let (Xn) be an almost increasing sequence. If the conditions (2.1)-(2.4) and (2.6)-(2.7) of
Theorem 2.1 and

m∑
n=1

(
Pn

pn

)β(δk+k−1)−k
|tn|k =O(Xm) as m →∞, (3.5)

∞∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)| =O

((
Pv

pv

)β(δk+k−1)−k
)

, (3.6)
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are satisfied, then the series
∞∑

n=1
an

Pnλn
npn

is summable |A, pn,β;δ|k, k≥1, δ≥0 and

−β(δk+k−1)+k > 0.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.2 ([11]). If (Xn) is an almost increasing sequence, then under the conditions (2.2)-(2.3),
we have that

nXnβn =O(1), (3.7)
∞∑

n=1
βnXn <∞. (3.8)

Lemma 3.3 ([4]). If the conditions (2.6) and (2.7) are satisfied, then ∆(Pn/pnn2)=O(1/n2).

4. Proof of Theorem 3.1

Let (In) denotes A-transform of the series
∞∑

n=1

anPnλn
npn

. Then, by (1.11) and (1.12), we have

∆̄In =
n∑

v=1
ânv

avPvλv

vpv
.

Applying Abel’s transformation to this sum, we get that

∆̄In =
n∑

v=1
ânv

vavPvλv

v2 pv

=
n−1∑
v=1

∆v

(
ânvPvλv

v2 pv

) v∑
r=1

rar + ânnPnλn

n2 pn

n∑
r=1

rar

=
n−1∑
v=1

∆v

(
ânvPvλv

v2 pv

)
(v+1)tv + annPnλn

n2 pn
(n+1)tn

=
n−1∑
v=1

∆v(ânv)
(v+1)

v2
Pvλv

pv
tv +

n−1∑
v=1

ân,v+1Pv

pv
∆λvtv

(v+1)
v2

+
n−1∑
v=1

ân,v+1λv+1∆

(
Pv

v2 pv

)
tv(v+1)+ annPnλn

n2 pn
(n+1)tn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is enough to show that
∞∑

n=1

(
Pn

pn

)β(δk+k−1)
|In,r|k <∞, for r = 1,2,3,4. (4.1)

First, using the fact that Pv =O(vpv) by (2.6), we have that
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,1|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)| |λv| |tv|
)k

.
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Now, applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, we have
that

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,1|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)| |λv|k
∣∣tv

∣∣k
)(

n−1∑
v=1

|∆v(ânv)|
)k−1

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
ak−1

nn

(
n−1∑
v=1

|∆v(ânv)| |λv|k
∣∣tv

∣∣k
)

.

Now, using the fact that ann =O( pn
Pn

) by (3.3), we have that

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,1|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

|∆v(ânv)| |λv|k
∣∣tv

∣∣k
)

=O(1)
m∑

v=1
|λv|k|tv|k

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

=O(1)
m∑

v=1

(
Pv

pv

)β(δk+k−1)−k
|λv|k−1|λv||tv|k

=O(1)
m∑

v=1

(
Pv

pv

)β(δk+k−1)−k
|λv| |tv|k

=O(1)
m−1∑
v=1

∆|λv|
v∑

r=1

(
Pr

pr

)β(δk+k−1)−k
|tr|k

+O(1)|λm|
m∑

v=1

(
Pv

pv

)β(δk+k−1)−k
|tv|k

=O(1)
m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm

=O(1)
m−1∑
v=1

βvXv +O(1)|λm|Xm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
Now, using Hölder’s inequality, we have that

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,2|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1||∆λv||tv|
)k

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

v |∆v(ânv)|βv|tv|
)k

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

vβv |∆v(ânv)| |tv|k
)(

n−1∑
v=1

vβv |∆v(ânv)|
)k−1

.

Since

∆v(ânv)= ânv − ân,v+1 = ānv − ān−1,v − ān,v+1 + ān−1,v+1 = anv −an−1,v
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we get that
n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v −anv)≤ ann.

Thus, we obtain
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,2|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
ak−1

nn

(
n−1∑
v=1

vβv |∆v(ânv)| |tv|k
)

.

Now, using (3.3), we have that
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,2|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

vβv |∆v(ânv)| |tv|k
)

=O(1)
m∑

v=1
vβv|tv|k

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

=O(1)
m∑

v=1
vβv|tv|k

(
Pv

pv

)β(δk+k−1)−k

=O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

(
Pr

pr

)β(δk+k−1)−k
|tr|k

+O(1)mβm

m∑
v=1

(
Pv

pv

)β(δk+k−1)−k
|tv|k

=O(1)
m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm

=O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

Since ∆
(

Pv
v2 pv

)
=O

(
1
v2

)
, we have that

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,3|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1||λv+1| |tv|
v

)k

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)||λv+1||tv|
)k

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)| |λv+1|k|tv|k
)(

n−1∑
v=1

|∆v(ânv)|
)k−1

=O(1)
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
ak−1

nn

(
n−1∑
v=1

|∆v(ânv)| |λv+1|k|tv|k
)

.

By using (3.3), as in In,1, we have that
m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
|In,3|k =O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

|∆v(ânv)| |λv+1||tv|k
)
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=O(1)
m∑

v=1
|λv+1||tv|k

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

=O(1)
m∑

v=1

(
Pv

pv

)β(δk+k−1)−k
|λv+1||tv|k

=O(1) as m →∞,

by virtue of hypotheses of Theorem 3.1, Lemma 3.2 and Lemma 3.3.
Finally, by using Abel’s transformation, as in In,1, we have that

m∑
n=1

(
Pn

pn

)β(δk+k−1)
|In,4|k =O(1)

m∑
n=1

(
Pn

pn

)β(δk+k−1)
ak

nn|λn|k|tn|k

=O(1)
m∑

n=1

(
Pn

pn

)β(δk+k−1)−k
|λn|k−1|λn||tn|k

=O(1)
m∑

n=1

(
Pn

pn

)β(δk+k−1)−k
|λn||tn|k

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
This completes the proof of Theorem 3.1.

5. Corollaries
Corollary 1. If we take β= 1 and δ= 0, then we get a theorem dealing with |A, pn|k summability
(see [9]).

Corollary 2. If we take β= 1, δ= 0 and anv = pv
Pn

, then we get Theorem 2.1.

6. Conclusion
We prove a general theorem for absolute matrix summability of infinite series by virtue of
almost increasing sequence. This general theorem enrich the literature of summability theory
and create basis for future researches.
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