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1. Introduction

Study on energy of graphs goes back to the year 1978, when Gutman [16] defined this while
working with energies of conjugated hydrocarbon containing carbon atoms. All graphs considered
in this article are assumed to be simple without loops and multiple edges. Let A = (a;;) be the
adjacency matrix of the graph G with its eigenvalues p1,p2, 03, -, 0, assumed in decreasing
order. Since A is real symmetric, the eigenvalues of G are real numbers whose sum equal
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to zero. The sum of the absolute eigenvalues values of G is called the energy E(G) of G. i.e.,
E@)= fllpu.

TheZ)_ries on the mathematical concepts of graph energy can be seen in the reviews [20],
articles [9,/10,(17]] and the references cited there in. For various upper and lower bounds for
energy of a graph can be found in articles[22], 23] and it was observed that graph energy has
chemical applications in the molecular orbital theory of conjugated molecules [15,{19].

Gutman and Zhou [21]] defined the Laplacian energy of a graph G in the year 2006. Let
G be a graph with n vertices and m edges. The Laplacian matrix of the graph G, denoted by
L =(L;}), is a square matrix of order n whose elements are defined as

-1 ifv; and v, are adjacent
L;j=40 ifv; and v; are not adjacent
d;, ifi=j,
where d; is the degree of the vertex v;. Let ui,us,---,u, be the Laplacian eigenvalues of G.
Laplacian energy LE(G) of G is defined as LE(G) = 3. |u; — 22|,
The basic properties including various upper anélzllower bounds for Laplacian energy have

been established in [2,/11,14,(18,[27,30438] and it has found remarkable chemical applications,
the molecular orbital theory of conjugated molecules [8].

1.1 Randi¢ Energy
It was in the year 1975, Milan Randi¢ invented a molecular structure descriptor called Randi¢
index which is defined as [29]:

1
RG)= ) :
v eB(@) V did,

Motivated by this Bozkurt et al. [6] defined Randi¢ matrix and Randié¢ energy as follows.
Let G be graph of order n with vertex set V ={v1,vg,...,v,} and edge set Randi¢ matrix of
G is a n x n symmetric matrix defined by R(G) := (r;;), where

L ifv,v; € EG)
rij=

did; (1.1)

0 otherwise.
The characteristic equation of R(G) is defined by f,,(G, p) = det(pI — R(G)) = 0. The roots of this
equation is called Randi¢ eigenvalues of G. Since R((G) is real and symmetric, its eigenvalues
are real numbers and we label them in decreasing order p; = p2 =... = p,. Randié energy of G

n
is defined as RE(G):= Y |p;l.
i=1
Further studies on Randi¢ energy can be seen in the articles [7,/12,25] and the references

cited therein.

1.2 Minimum Covering Energy

In the year 2012, Adiga et al. [1] introduced minimum covering energy of a graph, which depends
on its particular minimum cover. A subset C of vertex set V is called a covering set of G if every
edge of GG is incident to at least one vertex of C. Any covering set with minimum cardinality is
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called a minimum covering set. If C is a minimum covering set of a graph G then the minimum
covering matrix of G is the n x n matrix defined by Ac(G) :=(a;;), where

1 ifv;vj e E(G)
a;jj=41 ifi=jandv;eC (1.2)
0 otherwise.

The minimum covering eigenvalues of the graph G are roots of the characteristic equation
fn(G,p) =0 =det(pI — Ac(@)) =0, obtained from the matrix A¢(G). Since A¢(G) is real and
symmetric, its eigenvalues are real numbers and we label them in the order p; = pgs=:-- = p,.

n
The minimum covering energy of G is defined as E¢(G) := .Z lpil.

=1
1.3 Minimum covering Randi¢ Energy
Results on Randi¢ energy and minimum covering energy of graph G motivates us to define
minimum covering Randi¢ energy. Consider a graph G with vertex set V = {v1,vg,...,v,} and

edge set E. If C is a minimum covering set of a graph GG then the minimum covering Randi¢
matrix of G is the n x n matrix defined by Rc(G) :=(r;;), where

1 R
e ifv,v; € E(G)

rij =41 ifi=jandv; €C

0 otherwise.
The characteristic polynomial of R¢(G) is defined by f,,(G, p) = det(pI — R¢(G)). The minimum
covering Randi¢ eigenvalues of the graph G are the eigenvalues of R¢(G). Since R¢(G) is real

and symmetric matrix so its eigenvalues are real numbers. We label the eigenvalues in order
n
p1=p2 == py,. The minimum covering Randi¢ energy of G is defined as RE¢(G):= . |pil.
i=1
In the year 2012, Adiga et al. [1] introduced minimum covering energy of a graph, which
depends on its particular minimum cover. Motivated by this article, recently Rajesh Kanna and

Jagadeesh in the article [28] introduced the concept of minimum covering Randié¢ energy.

1.4 Laplacian Energy
Gutman and Zhou in article [21] introduced the Laplacian energy of a graph G in the year 2006.

Definition 1.1. Let G be a graph with n vertices and m edges. The Laplacian matrix of the
graph G, denoted by L = (L), is a square matrix of order n x n whose elements are defined as

-1 if v; and v; are adjacent
L;j=40 if v; and v; are not adjacent
d;i ifi=j

where d; is the degree of the vertex v;.

Definition 1.2. Let u1,us,---,u, be the Laplacian eigenvalues of G. Laplacian energy LE(G)
n

of G is defined as LE(G) = ¥ |u; — 22|
i=1
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1.5 Laplacian Minimum covering Energy of A Graph

Let D(G) be the diagonal matrix of vertex degrees of the graph G. Then L(G)=D(G)—-Ac(G)
is called the Laplacian covering matrix of G. Let ui,us,...,u, be the eigenvalues of Lo (G),
arranged in non-increasing order. These eigenvalues are called Laplacian minimum covering

eigenvalues of G. The Laplacian minimum covering energy of the graph G is defined as
n

LEc(@):=Y
=1

2m
Hi——
n

K

where m is the number of edges of G and 27'” is the average degree of GG.

1.6 Laplacian Minimum Covering Randi¢ Energy of A Graph

Let D(G) be the diagonal matrix of vertex degrees of the graph G. Then LR(G) = D(G)-R¢(G)
is called the Laplacian covering matrix of G. Let p1, p2,ps3,...,0n be the eigenvalues of LRc(G),
arranged in non-increasing order. These eigenvalues are called Laplacian minimum covering

Randié eigenvalues of G. The Laplacian minimum covering Randié energy of the graph G is
defined as

LREc(G):=Y.
i=1

2m
pi——
n

M

where m is the number of edges of G and 27'” is the average degree of G.

In this article, we are interested in studying mathematical aspects of the Laplacian minimum
covering energy of a graph. The application of Laplacian minimum covering energy in other
branches of science have to be investigated.

Example 1. (i) C1 ={vg,v4,vg}, (i1) Co = {ve,v4,v5} are the possible minimum covering sets for
the Figure [I] as shown below.

U3 U9 U.l
U4 U‘5 Vg
Figure 1
0 3 0 0 0 0O
19 L 1 1 100000
21\/5\/11_2\/5 040000
0 == 0 = 0 0 00 200 0
(i) Re,(G) = Ve VB , D)= :
o L L 1 1 9 000300
Viz V6 3
o L o 1 o L 0 00O03DO0
V12 3 V3 000O0TO0 1
0o ~ o o L 1
V12 V3
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1 % 0 0 0 0
-1 -1 -1 -1
= 3w o O
0 = 2 = 0 0
LRc,(G)=D(G)-Rc,(G) = 0 __@ -1 \;é 1 9

Laplacian minimum covering Randi¢ eigenvalues are p; = —0.1172220, p2 = 0.8641210,
ps = 1.4559813, p4 = 3.407766, p5 = 3.0439018, pg = 2.3454518.

Number of vertices = 6, number of edges = 7.

2m _ 2x7 _ 7T

n 6 3"

Therefore, average degree =

Laplacian minimum covering Randi¢ energy, LRE ¢,(G) = 6.5942393.

0o 2 0 0 0 O
14 L L 1L 100000
21\/3\/11_2\/ﬁ 040000
6 = 0 —= 0 0 002000
(i) Rey(G) = Vs VB , D@G)= ,
0o i o 1 1 000030
V12 3 V3 000O0TO01
o -~ o o L o
Vi2 V3
1 3 0 0 0 0
-1 -1 -1 -1
3 i%ﬁlzmo
o =L 2 =L o o
LRc,@=D@~Re,@=| % 5 9 5
\/11_2\/613 1
O@O?iﬁ
0 7= 0 0 2 1

Laplacian minimum covering Randi¢ eigenvalues are p; = 3.2591135, p2 = 0.6640478,
ps =~ 0.8892142, p4 = 1.4512959, p5 ~ 2.5725331, pe = 2.1637955.

Number of vertices = 6, number of edges = 7.
2m _ 2x7 _ 7

Therefore, average degree = = 5 =3

Laplacian minimum covering Randi¢ energy, LRE ¢,(G) = 5.3299599.
Therefore, Laplacian minimum covering Randié¢ energy depends on the covering set.

2. Main Results and Discussion

2.1 aplacian Minimum Covering Randi¢ Energy of Some Standard Graphs

Theorem 2.1. For n = 2, Laplacian minimum covering Randié¢ energy of complete graph K, is

(n—2)2+V4n2—8n+5
n—-1 :

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018



172 Laplacian Minimum covering Randi¢ Energy of A Graph: M.R. Rajesh Kanna and R. Jagadeesh

Proof. Let K,, be a complete graph with vertex set V ={vy,v9,vs,...,v,}. The Laplacian
minimum covering set for K,, is C ={v1,v9,vs,...,U,-1}. Then

1 1 11 1
n-1 n-1 n-1 n-1 n-1
1 7 1 1 1
n—1 n—1 n-1 n-1 n-1
1 1 1 1 1
n-1 n-1 n-1 n-1 n-1
Rc(Ky) = : : T : : s
1 1 1 1 1 1
n-1 n-1 n-1 n-1 n-1
1 1 1 1 7 L
n-1 n-1 n-1 n—1 n-1
1 1 1 1 1
n-1 n-1 n-1 °° n-1 n-1 nxn
n-1 0 0 0 0 0
0 n—1 0 0 0 0
0 0 n—-1 0 0 0
D(K,) = : : : : : : )
0 0 0 n—-1 0 0
0 0 0 0 n—-1 0
0 0 0 0 0 n—
nxn
-1 -1 -1 -1 -1
n-2 n—-1 n—1 n—-1 n—-1 n—1
-1 -1 -1 -1 -1
n-1 n—2 n—1 n-1 n-1 n—1
-1 -1 -1 -1 -1
n-1 n-1 n-2 n-1 n-1 n—1
LR¢(K,)=D(K,)-Rc(K,)= :
-1 -1 -1 -1 -1
n-1 n-1 n-1 n—2 n-1 n—1
-1 -1 -1 -1 -1
n-1 n-1 n—1 n-1 n-2 n—1
-1 -1 -1 -1 -1
n—1 n—1 n—1 n—1 n—1 n-1 nxn

Characteristic polynomial is
(-1)"[(n—1p—(n?-3n+3)1"2[(n—1)p% - (2n? —6n+5)p +(n® - 5n2 +8n —5)]
(n- 1)n—1 ’

Characteristic equation is
(1" [(n—1Dp—(n?-3n+3)]" 2[(n - 1)p® - (2n® —6n +5)p+(n® —5n® +8n - 5)] _

0.
(n _ l)n—l
Laplacian minimum covering Randi¢ spec
n?-3n+3 (2n%-6n+5)+V4n2-8n+5 (2n%-6n+5)-V4n2-8n+5
LRC(Kn) — n—1 2(n-1) 2(n-1)
n—2 1 1

Number of vertices = n, number of edges = nCy = %

om 2n(n—1) B
Therefore, average degree = =* = —2—=n—1.
Laplacian minimum covering Randi¢ energy,

2 2
-3n+3 2n“—-6n+5)+Vv4n2-8n+5
LREC(K,) =| ————~(n~ Dl —2)+ 22— 2() S (=D
f— n f—
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(2n2-6n+5)—vV4nZ—8n+5
—(n-1)(1
+ 2n=1) (n—-1)(1)
—n+2 3-2n)+V4an2-8n+5 3-2n)—V4n2-8n+5
_ n+ (n—2)+( n)+ n n+ (1)+( n) n n+ 1
n-1 2(n—1) 2(n—-1)
_(n—2)2+ 4n?-8n+5
T on-1 n—-1
(n-22%+vV4n2-8n+5
_ O

n—1

Definition 2.1. Cocktail party graph is denoted by K, «2, is a graph having the vertex set

n
V = U{u;,v;} and the edge set E ={u;uj,v;v;:i # jlU{uvj,v;uj:1<i<j<n}.
i=1

Theorem 2.2. Laplacian minimum covering Randié energy of cocktail party graph K, .o is

(n-1)2+V4n2—8n+5
n-1

n
Proof. Consider cocktail party graph K, .o with vertex set V = U {u;,v;}. The Laplacian
i=1

1=

e
minimum covering set of cocktail party graph K, «2 is C = U {u;,v;}. Then

i=1
ui ug us Un U1 U9 U3 Un
T T T I T T
ui 1 n-2 2n-2 -2 0 n-2 2n-2 In-2
u 1 1 1 0 1 1
2 | 2p=2 2n-2 2n-2 | 2n-2 2n-2 2n-2
u 1 _1 1 1 1 1 0 1
3| 2m—2 2n—2 2n—-2 | 2n—2 2n-2 2n—2
1 1 1 1 1 1
Ro(Kyx2)=|_Yn |33 35 on3 333 0 |55 =2 on 0 |,
v 0 T T T 1 T T T
1 2n-2 2n-2 2n—2 2n-2 2n-2 2n—2
vy 1 0 1 1 1 1 1 1
2n—2 2n—-2 2n-2 2n—-2 2n—-2 2n—-2
vs 1 1 0 1 1 1 1 1
2n—-2 2n—-2 2n—-2 2n—-2 2n-2 2n—-2
1 1 1 1 1 1
Un |9p3 932 9n-29 0 |95 o o> 0
u1 us us Un U1 ) U3 Uy,
ui | 2n-2 0 0 0 0 0 0 0
us 0 2n—-2 0 0 0 0 0 0
us 0 0 2n—-2 0 0 0 0 0
DK, x2)=]| un 0 0 0 2n—2 0 0 0 0
U1 0 0 0 0 2n—-2 0 0 0
i) 0 0 0 0 0 2n-2 0 0
U3 0 0 0 0 0 0 2n—-2 0
Un 0 0 0 0 0 0 0 2n—-2
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.9, No. 2, pp. 2018




174 Laplacian Minimum covering Randi¢ Energy of A Graph: M.R. Rajesh Kanna and R. Jagadeesh

LRC(KnXZ) = D(KnX2)_RC(Kn><2)

u1i us us Up U1 D) U3 Un
1 1 1 1 1 1
ui 2”I3 In-2 2n12 2n12 01 In-2 2n12 2n12
U2 22 2n ; 3 gim e 2 | 72 01 A
Us | g3 n3 23 .. 503 | w3 anes 0 -2
_ -1 -1 -1 _ -1 -1 -1
=l Yn | 343 2n12 2n12 .. 2n - 2| 93 2n12 2n12 01
U1 0 In-2 -3 - oneg |2n—3 55 -2 ** Zn-2
1 1 1 1 1 1
V2 | 3,73 0 =2 '+ -2 | 3 2"—3 g3 - -2
vy | -1 0 ... g2 —1 L 2n-3 ... &L

2n—-2 2n—-2

Un | 9p03  mnts e e 0 1 ! 1 ... 2n-2
Characteristic polynomial is,
[p—©2n—2)1p—-2n-3)]1"(n-1)p?—(4n?-10n+T)p + (4n3 - 16n2 + 22n — 11)]

(n _ 1)n—1

Characteristic equation is,
[p—@2n-2)llp-@2n-3)]"1[(n-1p? - (4n® - 10n + T)p + (4n® - 16n% +22n - 11)] _

0.
(n _ 1)n—1
Laplacian minimum covering Randié
99 -9 9n—3 (4n®-10n+7)+V4n2—8n+5 (4n°-10n+7)-V4n2-8n+5
spec(Knxg) — 2(n—-1) 2(n-1) .
1 n—1 1 1
Number of vertices = 2n, number of edges = 2n(n —1).
Therefore, average degree = % =2(n-1).
Laplacian minimum covering Randi¢ energy,
LREc(Kyx2)=1(2n-2)-2(n - 1){1)+(2n - 3) - 2(n - Di(n - 1)
(4n%-10n+7)+V4n2—8n+5
+ -2(n-1)1
2 —1) (n—1)(1)
(4n%—10n+7)—V4nZ —8n +5
+ -2(n-1)1
2n_1) (n-1)(1)
-2n+3+V4n?2-8n+5 -2n+3-V4n?-8n+5
=0+ -1(n— 1)+ — T+ =2 oY)
2n -2 2n—-2
V4n2-8n+5
n—-1
_(n-1)?+V4n2-8n+5 -
B n—1

Theorem 2.3. Laplacian minimum covering Randié energy of star graph is
V5 if n=2

LRc(K1,-1)=
e {@ju n?—6n+18 if n>2.

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018
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Proof. Let K1 ,-1 be a star graph with vertex set V = {vg,v1,v9,...,v,-1}. Then its minimum
covering set is C = {vg}.

Case (i): If n = 2 then characteristic equation is p2—p—-1=0.

Laplacian minimum covering Randié¢

1+vV5 1-V5
SPeCLRC(Kl,n—1)=( i i )

Number of vertices = 2, number of edges = 1.
—2Q) _
Therefore, average degree = =~ = 1.

Laplacian minimum covering Randi¢ energy,

1+v5 1-v5 5-1 5+1
LREC(Kl,n—l) = \/_ -1+ \/_ -1(1) = \/_ + \/_ = \/5
2 2 2 2
Case (ii): If n>2
1 1 1 1 1
L 0 0 0O ... 0
n—1
L 0 0 0 .. 0
RC(Kl,n—l): 1 0 0 0 0 ’
n—-1
L 0 0 0 0
n—1 nxn
n-10 0 0 0
0 100 0
0 010 0
D(Kl,n—l): 0 00 1 0 R
0 000 1)
n-2 =1 -1 -1 -1
- 1 0 0 0
— 0 1 0 0
LRC(Kl,n—l):D(Kl,n—l)_RC(Kl’n_l): -1 0 0 1 0
n—1
1 0 0 o ... 1
n—1 nxn

Characteristic equation is (=1)"[p — 11" 2[p2 —(n — 1)pn — 3] = 0.

Laplacian minimum covering Randié
1 (n—1)+vn2-6n+13 (n-1)-vn2-6n+13
2 2

specLRc(K1 ,-1) =
n—2 1 1

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018
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Laplacian minimum covering Randi¢ energy,

2(n—1 -1 Z2-6n+13 2(n-1
LREG(K 1 1)=|1- (nn Jon—2)4 )+W_ (nn .
+(n—1)—\/m_2(n—1)(1)
2 n

—n+2 (n%2-bn+4)+nVn2—6n+13
= (n—2)+ 1)

n 2n
+(n2—5n+4)—n\/m(1)

2n

—9)2
oD e s, .

n

Definition 2.2. Crown graph S? for an integer n > 2 is the graph with vertex set {u1,us,...,
Un,V1,V2,...,Up} and edge set {u,v;:1<1i,7<n,i #j}

. .. . ., 0 -
Theorem 2.4. For n = 2, Laplacian minimum covering Randié¢ energy of the crown graph S, is

equal to VB+Vn2-2n+5

Proof. For the crown graph S(,)L with vertex set V = {uq,u9,...,u,,v1,09,...,0,}, minimum
covering set of crown graph S?L is C ={u1,u9,...,u,}. Then

uil u9g us Un U1 %) U3 Un
w10 0 . 00 &
ug| 0 1 0 0 ;5 0 35 - 5
ug| 0 0 1 0 |75 #/ O =)

Rc(8%9)=| u,| 0 0 0 1| L L L o |,

v | 0 45 L =10 0 0 0

1 1 1
U9 EET ? n—1 ﬁ}i 0 0 0 0

1 1 :

L s s s 0]0 0 0 0

ui uz us Up U1 U2 U3 Un
ui|n-1 0 o ... 0 0 0 0 0
us 0O n-1 0 .. 0 0 0 0 0
us 0 0 n-1 0 0 0 0 0

DESH=| u,| 0 0 0 n-1| 0 0 0 o |,

U1 0 0 0 0 ([n—-1 O 0 0
i) 0 0 0 0 0 n-1 O 0
U3 0 0 0 0 0 0 n-1 0
Un 0 0 o ... 0 0 0 0 .. n-1

Commaunications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018
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LRc(S) =D(S%) - Rc(S?)

uil u9 us Unp U1 U9 Us Un
—1 —1 =
uil n-—2 0 0 0 01 n_1 n__ll n__ll
us 0 n-2 0 0 — = —
us| 0 0 n-2 o | =% =X o —L
: -1 —.1 —:1 :
(Y] 0O 0O R s S W 0
U1 _01 el T_ll ?_11 n—-1 0 0 0
U9 T_ll _01 1 T_ll 0 n—1 0 0
%] =1 el 0 1 0 0 n-1 0
-1 -1 -1 : .

Characteristic polynomial is
[p2-=2n-3)p+(n%2=3n+DI(n—-1)2p2-2n-3)n-12%p+(1n*-5n2+9n%2 - Tn+ 1!
(n _ 1)2n—2 :

Characteristic equation is
[p2-=2n-3)p+(n%2=3n+DI(n—-1)%p%2-2n-3)n-12p+(1n*-5n2+9n% —Tn+ D" !

(n _ 1)2n—2

Laplacian minimum covering Randié

@2n-3)+V5 (2n-3)-v5 (2n®-5n+3)+vn2-2n+5 (2n2-5n+3)-VnZ2-2n+5
specSO — 2 2 2(n—1) 2(n—1)
n
1 1 n—1 n—1
Number of vertices = 2n, number of edges = n(n —1).
Therefore, average degree = % =n-1.
Laplacian Minimum covering Randic energy,
2n—-3)—v5
LRE(S?) = 5 —(n—l)(1)+u—(n—1)(1)
(2n -5n+3)+vnc—-2n+5
—(n-1)n-1)
2(n — 1)
(2n2-5n+3)-vVn2-2n+5
+ - 1 1
2 1) (n-1)n-1)
\/_ \/_+1‘ (-n+1)+vVn2-2n+5
(1) (n-1)
2 2(n-1)
(—n+1)—\/n —2n+5
+ (n—1)
2(n—1)

=v5+Vn2-2n+5. O

Theorem 2.5. The minimum covering Randié¢ energy, Rc(G) of the complete bipartite graph
REc(K,, ) is equal to

‘nz—mn—m—n

(m—-1)+ (n—1)+vVn2—C2m+2)n+m2+2m+5.

m(m —n)

‘ m+n

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018
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Proof. For the complete bipartite graph K, ,, (m < n) with vertexset V ={u1,us,...,um,v1,02,...,05},
minimum covering set is C ={u1,ug,...,u,}. Then

uil u9 us Um U1 U9 Us . Un
1 1 1 1
ui 1 0 o ... 0 @ @ @ . @
Us 0 1 o ... 0 @ @ ‘/'f_n . \/@
us 0 0 1 .. 0 N AR T
RcKpmp)=| 4m| 0 0 0 LV |\ Zm Tem T T |
vy | — 1 1 1 0 0 0 . 0
]
V3 | Vam  Vmm Vo T 0 0 o . 0
1 1 1 1 :
uip U9 UuUs Um | V1 Vg Usg Up
ui|n 0 O 0/0 0 0 . 0
us | 0 n O 00 0 O 0
us | 0 0 n 0|0 O O 0
DKpp)=| um| 0 0 O n|0 0 O o |,
vi | 0 0 O 0O lm 0 O 0
ve | O 0 O 0|0 m O 0
vg | 0 0 O 00 0 m 0
v, 1O O O ... OO0 O O m
LRC(Km,n):D(Km,n)_RC(Km,n)
ui u9 us Um U1 U9 U3 . Un
-1 —1 -1 -1
ui |n-1 0 0 0 \/_m? \/_m? \/_m? . \/_m?
Uus 0 n—1 0 0 N N
u 0 0 n-1 0 =1 =L i —1
: : : : : _:1 _:1 _:1 _:1
= um 0 0 0 . n—1 NN Jn
V] | e = = . LT m o0 0o . 0
V2 @ @ @ . @ 0 m 0o . 0
U3 | Tmm  Tmm Umm N 0 0 m . 0
1 —:1 —:1 -1 :
Un | Jan  Jmn  Jmn Jn 0 0 0 m

Characteristic equation is

D™ p-(m—-1""p-mI" Hp2—(n+m—-1Dp+(mn—-(m+1)]=0.
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Laplacian minimum covering Randi¢

(m+n-1)+ \/nz—(2m+2)n+m2+2m+5 (m+n—-1)— \/nz—(2m+2)n+m2+2m+5
_| n—-1 m
spec+ (K, ) = 2 2
m—-1 n-1 1 1
Number of vertices = m + n, number of edges = mn.
_ 2mn
Therefore, average degree = 272

Laplacian minimum covering Randié¢ energy,

2 2
LRE¢(Kpn)=/(n—1)— ——m—1)+m - ——(n—1)
m+n m+n
+(m+n—1)+\/nz—(2m+2)n+m2+2m+5 2mn[1)
2 m+nl
+(m+n—1)—\/nz—(2m+2)n+m2+2m+5 2mn{1)
2 m+nl
2—m—n—mn‘ m(m—n)
= (m—-1)+————(n—-1)
m+n | m
(m—n)2—(m+n)+(m+n)\/n2—(2m+2)n+m2+2m+5(1)
2(m+n)
(m—n)z—(m+n)—(m+n)\/n2—(2m+2)n+m2+2m+5(1)
2(m+n)
2 _ —m— _
_|nf-mn-m n(m_1)+m(m n)(n—l)
m+n m
+Vn2—-©Cm+2n+m2+2m+5. O

2.2 Properties of Laplacian Minimum Covering Randi¢ Eigenvalues
Theorem 2.6. Let G be a graph with vertex set V = {v1,vs,...,v,}, edge set E and C =
{ui,ug,...,ur} be a minimum covering set. If p1,p2,...,pn are the eigenvalues of Laplacian
minimum covering Randi¢ matrix LRc(G) then
n
) X pi=2|E|-IC]|
i=1
1 ifvi eC

R 1 1 _
(i1) Elp? =2M where M = gigl(di—ci)2+ Y Td; and ¢; = {0 ifuieC.

i<j
Proof. (i) We know that the sum of the eigenvalues of LR (@) is the trace of LR (G).
Therefore, i Pi = i rii= i d; —|C|=2|E|-|C].

i=1 i=1 i=1
(ii) Similarly the sum of squares of the eigenvalues of LR¢(G) is trace of [LR(G)]?. Therefore,

n 9 n n
lei =2 D TifTi
i=

i=1j=1
2
= i)+ ) rijrji
i=1 i7]
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n

=Y (ri)* +2) (ri))?

=1 i<j
= rll)2+2

5 E(m)

n 1 ifv;eC
=Y'(d; —¢;)? where ¢; = '

i:zi Kjdd ' {o ifv;¢C
=2M, whereM==-) (d;- O
2l:Z]. l l<Jdd

The question of when does the graph energy becomes a rational number was answered
by Bapat and Pati in their article [4]. Similar result for Laplacian minimum covering Randi¢
energy is obtained in the following theorem.

Theorem 2.7. Let G be a graph with a minimum covering set C. If the sum of the absolute
values of Laplacian minimum covering Randié¢ eigenvalues is a rational number, then

Z lp;| = 1Cl(mod 2).

l_

Proof. Let p1,p2,...,pn be Laplacian minimum covering Randi¢ eigenvalues of a graph G, of
which p1,p2,...,p, are positive and the rest are non-positive, then

n
leil:(p1+p2+...+pr)—(pr+1+...+pn):2(p1+p2+...+pr)—(p1+p2+...+pn)

i=1
n
=2(p1+p2+...+0)— ) pi=2(p1+p2+...+pr)—(2IE| - |C])
i=1
=2(p1+p2+...+pr—|E])+|C]|
Therefore,
n
Y 1pil =1Cl(mod?2). (2.1)
i=1

O

Theorem 2.8. Let G be a graph with n vertices, m edges and C is a minimum covering set of G.
If the sum of the absolute Laplacian minimum covering Randié eigenvalues is a rational number,
then

LRE-(G)e(IC|+2t-2m,|C|+2t+2m),

where t is an integer such that
n

Y 1pil =1Cl(mod 2).

Proof. We know that

n

2 n
Y |oi= =2 < X loil +2m
n i=1

i=1

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018



Laplacian Minimum covering Randi¢ Energy of A Graph: M.R. Rajesh Kanna and R. Jagadeesh 181

ie.,
n
LREc(G)< ) |pil+2m =|C|+2t+2m (from (2.1))
i=1
Also,
n
LRE:(G)= lei|—2m2|C|+2t—2m (from (2.1))
i=1
ie.,
LRE-(G)e(IC|+2t-2m,|C|+2t+2m).
The above result is similar to Parity Theorem 3.7 of [[1]]. O

2.3 Bounds for Laplacian Minimum Covering Randi¢ Energy

MClelland’s [23]] gave upper and lower bounds for ordinary energy of a graph. Similar bounds
for LRE ¢(G) are given in the following theorem.

Theorem 2.9 (Upper bound). Let G be a graph with n vertices, m edges and C is a minimum
covering set of a graph G. Then LRE¢(G)<v2Mn +2m.

Proof. Cauchy-Schwarz inequality is

e <(£7)(E7)

Put a; =1, b; =|p;| then
2

émﬂ s(i:ill) (i:il|pi|2)

i.e.,
" 2
Y lpil| =n2M.
i=1
Therefore,
n
Z lpil = V2Mn.
i=1
By Triangle inequality,
2m .
pi——|=lpil+|—|, Vi=12...,n
n
ie.,
2m 2m .
pi— | <lpil+ 25, Vi
n n
Thus
Y pi- < lei|+2—m <V2Mn+2m.
i=1 n i=1 i=1
Therefore, LRE-(G)<Vv2Mn+2m. O
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Theorem 2.10 (Upper bound). Let G be a graph with n vertices, m edges and C is a minimum
covering set of G. Then LRE o(G) < \/ZMn +4m(|C|—m).

Proof. Using Cauchy-Schwarz inequality

e (£ £

2
n o2m n n 2m |2
- < 1 o
(Elo=22]) <[£) (£ %)
ie.,
2 4 4 4
[LREcG) <n Zpl+z———m2pl =n 2M+i n——m(Zm ICl)
i=1 n =1
4 2 8 4m|C
Cnlopr s 28 4O o dmCl - m).
n n n
Therefore, LRE(G) < \/2Mn +4m(|C| - m). O

Theorem 2.11 (Lower bound). Let G be a graph with n vertices and m edges and C is a
minimum covering set of G. If D = |det LR ¢(G)|, then

LREG(G)= \/2M + n(n— DD’ —2m.

Proof. Consider

i:ilmn 2=(i:i1|pi|)-(ji|pj) Zmll +Y Ipillpjl.

1#£]
Therefore,
n
lezl |,0J|—(Z|Pz) —Z|pl|2 (2.2)
1#] i=1
Applying 1nequal1ty between the arithmetic and geometric means for n(n — 1) terms, we have
> 1pillpjl
2= [T]Ipillp |]’“” .
nn-1) i%) P
ie.,

Y lpillpjl =z n(n—1)
i£j
Using (2.2), we get

2 n
(Z lpil ) Y lpil?zn(n-1)

i=1

1
n(n-1)
[Tleil Ilel :

i£]

o an-1) D
H|Pi| n )

i=1

n n

[Tl1eil

i=1

)

2
(Z |pi|) —2M =n(n-1)
i1
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n n

Hpi

i=1

2
n
(Z Ipil) >2M +n(n-1)
i=1
Therefore,

n
S loil = V2M +n(n- DD
1=1

We know that
2m 2m .
loil = |—| < |pi ==, Vi (2.3)
n
ie.,
2m 2m .
lpil——<|pi——|, Vi,
n n
L no9 i 2m
dlpil =) — <> |pi——
=1 =1 =1 n
ie.,

n

> lpil=2m < LREc(G)

i=1
ie.,
1 2
LRE-(G)= leil —2m = \/2M+ n(n—1)D» —2m (from (2.3))
=1
Therefore,

LRE:(G)= \/2M+n(n—1)D% —%m. [

Theorem 2.12. If p1(G) is the largest minimum covering Randi¢ eigen value of LR¢(G), then
> ==

Proof. For any nonzero vector X, we have by [3]l,

X'AX
A)= .
p1A) 13??3({ X’X}
Therefore,
_ _ P g1
@2 dAY 2m=ICI=20 1</ A2 am—ICI-R(G)
p1 T Jd n B n ’
where ¢J is a unit column matrix. O

Just like Koolen and Moulton’s [26] upper bound for energy of a graph, an upper bound for
LRE (G) is given in the following theorem.

Theorem 2.13. If G is a graph with n vertices and m edges and (ICI +23i<; %dj) =n then

2
|C|+2zi<jﬁdj)

LRE-(G)=< M +.|(n=-1) [2M (
n n
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Proof. Cauchy-Schwartz inequality is
n 2 n n
Z aibi =< Z a? Z b? .
=2 i=2 i=2
Puta; =1, b; =|pil, then
(leil Zlelpil
=2 =2 i=2

=  [LREc(@)-p1P* <(n-1)2M - p?)

> LREc(G)<p1+/(n-D@M -p?)
Let f(x) =x+ /(n - 1)(2M — x2).

For decreasing function
-1
fl)<0 = 1- #n—1) <0

\/(n—l)(|0|+zz Tq — %

i<j
[2M
= x=\—
n

Since (2M) = n, we have \/% <M < p,.

n

Therefore
flo=f (%)
ie.,
LREc(G)=f(p1) < f(%)
ie.,
LrEc@= 2]
ie.,
LREC(G)5¥+\/(n—1) [2M—(¥)2] : O

Milovanovié¢ [24]] bounds for Laplacian minimum covering Randi¢ energy of a graph are
given in the following theorem.

Theorem 2.14. Let G be a graph with n vertices and m edges. Let |p1]| = |p2]| = ... = |p,| be a
non-increasing order of eigenvalues of LRc(G). If C is minimum covering set then

LRE:(G)> \/ZnM— a(n)(Ip1] - |2 —2m,

where a(n)= n[51(1- %[%]), [x] denotes greatest integer part of real number and

M—li(d~—c~)2+zi
_Zizl P didj,

i<j
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1 lf viEC

where c; = ;
{O if vieC.

Proof. Let a,a1,a9,...,a,,A and b,b1,bo,...,b,,B be real numbers such that ¢ <a; <A and
b<b;<BVYi=1,2,...,n then the following inequality is valid.

n n n
nZaibi - ZaiZbi

i=1 i=1 i=1
Ifa;=1pil, b, =Ipil,a=b=|p,l and A =b =|p;]|

n n 2
nZ|Pi|2—(Z|Pi|)
=1 i=1

< a(n)(A -a)B-Db).

< an)p1l-lpa?.

But
(lel) <2nM
= n2M (Z ) < a(n)(|p1] - 1pn))?
(Zm) > \/2Mn - a(n)(Ip1] - Ipal)?
Since
n n 2
LREc(G)=)  |pi—— zz(m—‘—’”‘).
i=1 i=1 n
Hence

LREG(G) = \/2nM - a(n)ip1| - |pn))? - 2m. 0

Theorem 2.15. Let G be a graph with n vertices and m edges. Let |p1| = |p2|=...=|pn| >0 be a
non-increasing order of eigenvalues of LRc(G) and C is minimum covering set then

2M
LRE:G)> +nlp1llpxl B
(lp1l+1paD
n 1 lf v;eC
where M=% Y (d;—c;)?+ ¥ Here ¢; =
2i:1 z<Jdd 0 If Uiic.

Proof. Let a; #0, b;, r and R be real numbers satisfying ra; < b; < Ra;, then we have the
following inequality

n n n
Zb?+rRZai <(r+R)) a;b;.

i=1 i=1

Put b; = |p,| a; =1, r=1p,l and R =|p1|
n 9 n n
Z pil? +101l lpal Y. 1= (p1l+1pxDY_lp;l
: l:]_ l:1
ie.,

n
2M + |p1l lpnln < (Ip1l+1paD ) lp;l
=1

Communications in Mathematics and Applications, Vol. 9, No. 2, pp. (167 , 2018



186

Laplacian Minimum covering Randi¢ Energy of A Graph: M.R. Rajesh Kanna and R. Jagadeesh

- ilp.|>2M+n|p1Hpn|
i=1 v (|P1|+|Pn|)

We know that

n

LREc(@) =Y
i=1

2m
pi——|-
n

Therefore

LREc(G)= ) |pil—
1=1
2M +n|p1llpnl

(Ip1l+1pnl)

'Zm
n

—-2m. O

= LREq(G)=

3. Conclusions

It was proved in this article that the minimum covering Randi¢ energy of a graph G depends on

the covering set that we take for consideration. Upper and lower bounds for minimum covering

Randié energy are established. A generalized expression for minimum covering Randié¢ energies

for star graph, complete graph, thorn graph of complete graph, crown graph, complete bipartite
graph, cocktail party graph and friendship graphs are also computed.
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