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1. Introduction

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Obviously,
every increasing sequence is almost increasing sequence but the converse need not be true as
can be seen from the example bn = ne(−1)n

. Let
∑

an be a given infinite series with the partial
sums (sn). Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0
pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1) . (1.1)

The sequence-to-sequence transformation

σn = 1
Pn

n∑
v=0

pvsv (1.2)
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defines the sequence (σn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn),
generated by the sequence of coefficients (pn) (see [5]).

The series
∑

an is said to be summable |N̄, pn|k, k ≥ 1, if (see [2])
∞∑

n=1

(
Pn

pn

)k−1
|∆σn−1|k <∞, (1.3)

where

∆σn−1 =− pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1. (1.4)

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where

An(s)=
n∑

v=0
anvsv, n = 0,1, . . . . (1.5)

The series
∑

an is said to be summable |A, pn;δ|k, k ≥ 1 and δ≥ 0, if (see [6])
∞∑

n=1

(
Pn

pn

)δk+k−1
|∆̄An(s)|k <∞, (1.6)

where

∆̄An(s)= An(s)− An−1(s).

If we set δ= 0, then |A, pn;δ|k summability reduces to |A, pn|k summability (see [8]). If we take
anv = pv

Pn
and δ= 0, then |A, pn;δ|k summability reduces to |N̄, pn|k summability. In the special

case δ= 0 and pn = 1 for all n, |A, pn;δ|k summability is the same as |A|k summability (see [9]).
Also if we take anv = pv

Pn
, then |A, pn;δ|k summability is the same as |N̄, pn;δ|k summability

(see [3]).

Before stating the main theorem we must first introduce some further notations.

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and
Â = (ânv) as follows:

ānv =
n∑

i=v
ani, n,v = 0,1, . . . (1.7)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1,2, . . . . (1.8)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

An(s)=
n∑

v=0
anvsv =

n∑
v=0

ānvav (1.9)

and

∆̄An(s)=
n∑

v=0
ânvav . (1.10)
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2. Known Result

In [4], the following theorem dealing with |N̄, pn|k summability factors of infinite series has
already been proved.

Theorem 2.1. Let (Xn) be an almost increasing sequence and let there be sequences (βn) and
(λn) such that

|∆λn| ≤βn, (2.1)

βn → 0 as n →∞, (2.2)
∞∑

n=1
n

∣∣∆βn
∣∣ Xn <∞, (2.3)

|λn|Xn =O(1). (2.4)

If
m∑

n=1

|λn|
n

=O(1) as m →∞, (2.5)

m∑
n=1

1
n
|tn|k =O(Xm) as m →∞ (2.6)

and (pn) is a sequence such that
m∑

n=1

pn

Pn
|tn|k =O (Xm) as m →∞, (2.7)

where (tn) is the nth (C,1) mean of the sequence (nan), then the series
∑

anλn is summable
|N̄, pn|k, k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem 2.1 to |A, pn;δ|k summability. Now, we shall
prove the following theorem.

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0,1, . . . , (3.1)

an−1,v ≥ anv, for n ≥ v+1, (3.2)

ann =O
(

pn

Pn

)
, (3.3)

and (Xn) be an almost increasing sequence. If the conditions (2.1)-(2.5) of Theorem 2.1 and the
conditions

m∑
n=1

(
Pn

pn

)δk−1
|tn|k =O(Xm) as m →∞, (3.4)

m∑
n=1

(
Pn

pn

)δk |tn|k
n

=O(Xm) as m →∞, (3.5)
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m+1∑
n=v+1

(
Pn

pn

)δk
|∆vânv| =O

{(
Pv

pv

)δk−1
}

as m →∞, (3.6)

m+1∑
n=v+1

(
Pn

pn

)δk
|ân,v+1| =O

{(
Pv

pv

)δk
}

as m →∞ (3.7)

are satisfied, then the series
∑

anλn is summable |A, pn;δ|k, k ≥ 1 and 0≤ δ< 1
/

k.

We need the following lemma for the proof of Theorem 3.1.

Lemma 3.2 ([4]). Under the conditions on (Xn), (βn) and (λn) as taken in the statement of
Theorem 3.1, the following conditions hold:

nβnXn =O(1) as n →∞, (3.8)

∞∑
n=1

βnXn <∞. (3.9)

4. Proof of Theorem 3.1

Let (In) denotes A-transform of the series
∑

anλn. Then, by (1.9) and (1.10), we have

∆̄In =
n∑

v=1
ânvavλv

=
n∑

v=1

ânvλv

v
vav .

Using Abel’s transformation, we have that

∆̄In =
n−1∑
v=1

∆v

(
ânvλv

v

) v∑
r=1

rar + ânnλn

n

n∑
r=1

rar

= n+1
n

annλntn +
n−1∑
v=1

v+1
v
∆v (ânv)λvtv +

n−1∑
v=1

v+1
v

ân,v+1∆λvtv +
n−1∑
v=1

1
v

ân,v+1λv+1tv

= In,1 + In,2 + In,3 + In,4 .

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that
∞∑

n=1

(
Pn

pn

)δk+k−1
|In,r|k <∞, for r = 1,2,3,4.

First, we have that
m∑

n=1

(
Pn

pn

)δk+k−1
|In,1|k =O(1)

m∑
n=1

(
Pn

pn

)δk+k−1
|λn|k|tn|kak

nn

=O(1)
m∑

n=1

(
Pn

pn

)δk−1
|λn| |λn|k−1|tn|k

=O(1)
m∑

n=1

(
Pn

pn

)δk−1
|λn| |tn|k

=O(1)
m−1∑
n=1

∆|λn|
n∑

r=1

(
Pr

pr

)δk−1
|tr|k +O(1)|λm|

m∑
n=1

(
Pn

pn

)δk−1
|tn|k
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=O(1)
m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

=O(1)
m−1∑
n=1

βnXn +O(1)|λm|Xm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, as in
In,1, we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1
|In,2|k =O(1)

m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|∆v(ânv)| |λv| |tv|
)k

=O(1)
m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|∆v(ânv)| |λv|k|tv|k
)(

n−1∑
v=1

|∆v(ânv)|
)k−1

=O(1)
m+1∑
n=2

(
Pn

pn

)δk
(

n−1∑
v=1

|∆v(ânv)| |λv|k|tv|k
)

=O(1)
m∑

v=1
|λv|k−1|λv| |tv|k

m+1∑
n=v+1

(
Pn

pn

)δk
|∆v(ânv)|

=O(1)
m∑

v=1

(
Pv

pv

)δk−1
|λv| |tv|k

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2. Again, we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1 ∣∣In,3
∣∣k =O(1)

m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|ân,v+1| |∆λv| |tv|
)k

=O(1)
m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|ân,v+1|βv|tv|k
)(

n−1∑
v=1

|ân,v+1|βv

)k−1

=O(1)
m+1∑
n=2

(
Pn

pn

)δk
(

n−1∑
v=1

|ân,v+1|βv|tv|k
)

=O(1)
m∑

v=1
βv|tv|k

m+1∑
n=v+1

(
Pn

pn

)δk
|ân,v+1|

=O(1)
m∑

v=1

(
Pv

pv

)δk
vβv

|tv|k
v

=O(1)
m−1∑
v=1

∣∣∆(
vβv

)∣∣ v∑
r=1

(
Pr

pr

)δk |tr|k
r

+O(1)mβm

m∑
v=1

(
Pv

pv

)δk |tv|k
v

=O(1)
m−1∑
v=1

v|∆βv|Xv +O(1)
m−1∑
v=1

βvXv +O(1)mβmXm

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.
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Finally, we have that

m+1∑
n=2

(
Pn

pn

)δk+k−1 ∣∣In,4
∣∣k ≤

m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|ân,v+1| |λv+1| |tv|
v

)k

≤
m+1∑
n=2

(
Pn

pn

)δk+k−1
(

n−1∑
v=1

|ân,v+1| |λv+1| |tv|k
v

)(
n−1∑
v=1

|ân,v+1| |λv+1|
v

)k−1

=O(1)
m∑

v=1

|λv+1|
v

|tv|k
m+1∑

n=v+1

(
Pn

pn

)δk
|ân,v+1|

=O(1)
m∑

v=1

(
Pv

pv

)δk |λv+1|
v

|tv|k

=O(1)
m−1∑
v=1

|∆λv+1|
v∑

r=1

(
Pr

pr

)δk |tr|k
r

+O(1)|λm+1|
m∑

v=1

(
Pv

pv

)δk |tv|k
v

=O(1)
m−1∑
v=1

βv+1Xv+1 +O(1)|λm+1|Xm+1

=O(1) as m →∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.2.

This completes the proof of Theorem 3.1. If we take anv = pv
Pn

and δ= 0 in Theorem 3.1, then
we get Theorem 2.1. Also, if we take δ= 0 in Theorem 3.1, then we obtain a known theorem on
|A, pn|k summability method (see [7]).

5. Conclusions

In this study, we have generalized a known theorem dealing with absolute summability method
to absolute matrix summability method by using almost increasing sequences. And so it has
been brought a different perspective and studying field.
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functions, Trudy. Moskov. Mat. Obšč., 5 (1956), 483–522 (in Russian).

Communications in Mathematics and Applications, Vol. 7, No. 4, pp. 303–309, 2016



A New Study on Generalized Absolute Matrix Summability: H. S. Özarslan 309

[2] H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147–149.

[3] H. Bor, On local property of |N̄, pn;δ|k summability of factored Fourier series, J. Math. Anal. Appl.
179 (1993), 646–649.

[4] H. Bor, On absolute Riesz summability factors, Adv. Stud. Contemp. Math. (Pusan) 3 (2) (2001),
23–29.

[5] G.H. Hardy, Divergent Series, Oxford University Press, Oxford (1949).
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