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Abstract. A semigroup S is called a posemigroup if S is equipped with a partial ordering relation “≤”
such that a ≤ b in S implies xa ≤ xb and ax ≤ bx, for all x ∈ S. In this paper, we define an equivalence
relation B∗ on a posemigroup S and introduce the concept of (m,n)-high-ideals by generalizing
the concept of (m,n)-ideals in a posemigroup, for two non-negative integers m and n. As a result
of this definition we get a relationship between 0∗-minimal (m,n)-high-ideals and (m,n)-regular
posemigroups. A necessary and sufficient condition for a posemigroup S to be an (m,n)-regular
posemigroup is given as well.
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1. Introduction
In 1952 Good [7] first defined the notion of bi-ideals of a semigroup. Also, the concept of the (m,n)-
ideal in semigroups was given by Lajos [13] as a generalization of one-sided ideals of semigroups.
Thereafter, the notion of the generalized bi-ideal was introduced in semigroups by Lajos in [14]
as a generalization of bi-ideals of semigroups. Moreover, the concept of ideals was studied in
rings and posemirings. For example, Pawar in 2015 introduced a class of ideals that lies between
essential ideals and semi-essential ideals (see [15]). Also, Gan introduced some properties of
ideals in posemirings [6]. Let m, n be non-negative integers. A subsemigroup A of a semigroup
S is called an (m,n)-ideal of S if AmSAn ⊆ A. Here, A0S = SA0 = S. Furthermore, the theory
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of (m,n)-ideals in other structures have also been studied by many authors(see [1], [2]). A
semigroup S is said to be (m,n)-regular [12] if for any a in S, there exsist x in S such that
a = amxan. In 1979 Bogdanović [3] studied some properties of (m,n)-ideals and (m,n)-regularity
of S. Indeed, the author characterized when every (m,n)-ideal of an (m,n)-ideal A of S is an
(m,n)-ideal of S. Moreover, (m,n)-regularity of S was discussed. In the present paper, using
the concept 0f (m,n)-ideals in posemigroups defined by Changphas in [5]. We extend the results
in [12], for posemigroups. Kaap [8] introduced an equivalence relation B on semigroup S by,
for a,b ∈ S, aBb if a = b or a ∈ bSb and b ∈ aSa; using this relation the author characterized
0-minimal bi-ideal of S. Tilidetzke [16] generalized Kapp,s results; the author introduced an
equivalence relation Bn

m on S where m,n are non-negative integers by, for a,b ∈ S, aBn
mb if

a = b or a ∈ bmSbn and b ∈ amSan; using the relation Bn
m, 0-minimal (m,n)-ideals of S are

characterized.

Throughout the paper S stands for a posemigroup. Following [10] we recall the definitions
of (A] and AB as:

(A] := {s ∈ S | s ≤ a, for some a ∈ A},

AB := {ab | a ∈ A,b ∈ B},

for subposets A and B of a posemigroup S. Changphas [5] generalized Tilidetzeke’s results; the
author introduced and equivalence relation Bn

m on posemigroup S where m,n are non-negative
integers by, for a,b ∈ S, aBn

mb if and only if a = b or a ≤ bmvbn and b ≤ amuan for some u,v ∈ S,
that is,

a ∈ (bmSbn] and b ∈ (amSan].

By a left ideal of a posemigroup S we mean a non-empty subset L of S satisfying SL ⊆ L and
(L]⊆ L. A right ideal may be defined in a similar way. A two sided ideal of S is a left as well as
a right ideal of S. For every non-empty subset A of S, let

(A]∗ := {s ∈ S|s ≤ an, for some a ∈ A,n ∈N}. (∗)

If there is an element 0 of a posemigroup S such that x0= 0x = 0 and 0≤ x for all x ∈ S, we call
0 a zero element of S. A left ideal L of a posemigroup S with zero 0 is said to be 0-minimal if
there is no a left ideal L′ of S such that {0} ⊂ L′ ⊂ L. For a right ideal of S, we can be defined
similarly. Recall from [10,11] that a non-empty subset B of S is called a bi-ideal of S if BSB ⊆ B
and (B]⊆ B. Changphas defined (m,n)-ideals in posemigroups as follows:

Let m, n be non-negative integers. A subposemigroup A of posemigroup S is called an
(m,n)-ideal of S if the following conditions hold:

(i) AmSAn ⊆ A,

(ii) (A]⊆ A, that is, for x ∈ A and y ∈ S, y≤ x implies y ∈ A.

In particular, A is called a bi-ideal of S if m = n = 1. It is clear that if A be a bi-ideal of S, then A
is an (m,n)-ideal of S. Bussaban [4] show that if A be a non-empty subset of a posemigroup S,
then the intersection of all (m,n)-ideals contaning A of S, denoted by [A]m,n, is an (m,n)-ideal
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contaning A of S, and is of the form

[A]m,n = (A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn].

For an element a of a posemigroup S, we write [{a}]m,n( or simply [a]m,n) by:

[a]m,n = (a∪a2 ∪ . . .∪am+n ∪amSan].

Here, we generalize the notion of Bn
m on a posemigroup S. The results obtained in [8, 16]

and [5] become then special cases. Let S be a posemigroup. A non-empty subset B of S is said
to be a high-bi-ideal of S if BSB ⊆ B and (B]∗ ⊆ B. Now relation (B∗)n

m on S there m,n are
non-negative integers, as follows:

For a,b ∈ S, let a(B∗)n
mb if and only if a = b or a ∈ (bmSbn]∗ and b ∈ (amSan]∗. Also a

subposemigroup A of S is called a (m,n)-high-ideal of S if the following conditions hold:

(i) AmSAn ⊆ A,

(ii) (A]∗ = A, that is, for x ∈ A and y ∈ S, y≤ xn implies y ∈ A.

We denote the high-bi-ideal generated by an element a ∈ S by B∗(a). One can easily show that
B∗(a)= (a∪a2 ∪aSa]∗. If A is a non-empty subset of posemigroup S, then the intersection of
all (m,n)-high-ideals contaning A of S, denoted by [A]∗m,n, is a (m,n)-high-ideal contaning A of
S and is of the form

[A]∗m,n = (A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn]∗.

(see Lemma 2.4). For an element a of a posemigroup S, we write [{a}]∗m,n (or simply [a]∗m,n) by:

[a]∗m,n = (a∪a2 ∪ . . .∪am+n ∪amSan]∗. (∗∗)

A posemigroup S with zero 0 is called nilpotent if Sl = 0, for some positive integer l. Also,
the center of posemigroup S is defined by

Z(S)= {x ∈ S| ∀ y ∈ S : xy= yx}.

Let m,n be non-negative integers. An element a of posemigroup S is said to be (m,n)-
regular [5] if a ≤ amxan for some x ∈ S. If every element of S be (m,n)-regular, then S is
called an (m,n)-regular posemigroup. A (m,n)-high-ideal A of a posemigroup S with zero 0
is said to be 0∗-minimal if there is no a (m,n)-high-ideal A′ of S such that {0} ⊂ A′ ⊂ A. We
consider 0∗-minimal (m,n)-high-ideals for regular posemigroups. Our main results concerning
the 0∗-minimal (m,n)-high-ideals which are the generalization of the 0-minimal (m,n)-ideals of
semigroups, are:

Proposition 1.1. Let S be a posemigroup with zero 0. Then:

(i) If A be a (m,n)-high-ideal of S, then A is 0∗-minimal if and only if A is one non-zero
(B∗)n

m-class union {0}.

(ii) If m,n ≥ 1 and A be a 0∗-minimal (m,n)-high-ideal of S such that, (A2]∗ 6= {0}, then A is
a 0∗-minimal high-bi-ideal of S.
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Proposition 1.2. Let S be a posemigroup with zero 0 and R,L are 0∗-minimal right-ideal and
0∗-minimal left-ideal of S respectively. Then:

(i) If S contains no non-zero nilpotent (m,n)-high-ideals, then (RL]∗ = {0} or (RL]∗ is a
0∗-minimal (m,n)-high-ideal of S.

(ii) If (RmLn]∗ ⊆ Z(S), then (RmLn]∗ = {0} or (RmLn]∗ is a 0∗-minimal (m,n)-high-ideal of S.

Proposition 1.3. Let S be an (m,n)-regular posemigroup with zero 0 and A and B be 0∗-
minimal (m,0)-high-ideal and 0∗-minimal (0,n)-high-ideal of S respectively. Then:

(i) If (AB]∗ ⊆ A∩B, then (AB]∗ = {0} or (AB]∗ is a 0∗-minimal (m,n) high-ideal of S.

(ii) A∩B = {0} or A∩B is a 0∗-minimal (m,n)-high-ideal of S.

Proposition 1.4. Let S be a posemigroup. Then, S is (m,n)-regular if and only if for every a in
S, we have:

[a]∗m,n = (amSan]∗.

2. The Proofs
To prove our assertions first we have to give certain preliminary results concerning the notions
of Section1. First, we give a generalized results of [9].

Lemma 2.1. For a posemigroup S and two non-empty subset A and B of S,

(i) A ⊆ (A]∗.

(ii) If A ⊆ B, then (A]∗ ⊆ (B]∗.

(iii) (A]∗(B]∗ ⊆ (AB]∗ for any two subposemigroups A and B of S.

(iv) ((A]∗(B]∗]∗ = (AB]∗.

(v) (A∪B]∗ = (A]∗∪ (B]∗.

Proof. (i), (iv) and (v) are evident.

(ii) Let t ∈ (A]∗. Then there exists a ∈ A and n ∈N such that t ≤ an. Since A ⊆ B, there exists
a ∈ B and n ∈N such that t ≤ an. Thus t ∈ (B]∗.

(iii) Take any x ∈ (A]∗(B]∗. This implies that x = ab for some a ∈ (A]∗ and b ∈ (B]∗. Then a ≤ hm

and b ≤ kn for some h ∈ A, k ∈ B and m,n ∈ N. It follows that ab ≤ hmkn. Since hm ∈ A and
kn ∈ B, we obtain hmkn ∈ AB. Therefore, ab ≤ hmkn ∈ AB showing that x ∈ (AB]∗.

Lemma 2.2. For a posemigroup S, the following conditions hold:

(i) The relation (B∗)n
m is an equivalence relation on S.

(ii) If A be a (m,n)-high-ideal of S, then

A = ⋃
a∈A

(B∗)n
m(a)

where (B∗)n
m(a) denote the (B∗)n

m-class contaning a in S.
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(iii) If A is a (m,n)-high-ideal of posemigroup S with zero 0 such that A be a single non- zero
(B∗)n

m-class union {0}, then A is a 0∗-minimal (m,n)-high-ideal of S.

Proof. (i) We show that (B∗)n
m is transitive. The reflexive and symetric properties are evident.

Let a,b, c ∈ S such that a(B∗)n
mb and b(B∗)n

mc. There are four cases to consider:

(a) a = b and b = c.

(b) a = b, b ∈ (cmScn]∗ and c ∈ (bmSbn]∗.

(c) b = c, a ∈ (bmSbn]∗and b ∈ (amSan]∗.

(d) a ∈ (bmSbn]∗, b ∈ (amSan]∗, b ∈ (cmScn]∗ and c ∈ (bmSbn]∗.

(a), (b) and (c) by definition of (B∗)n
m implies a(B∗)n

mc.

If (d) holds, then

a ∈ (bmSbn]∗ ⊆ (((cmScn]∗)mS((cmScn]∗)n]∗ ⊆ (cmScn]∗,

c ∈ (bmSbn]∗ ⊆ (((amSan]∗)mS((amSan]∗)n]∗ ⊆ (amSan]∗.

Therefore, a(B∗)n
mc. Hence, (B∗)n

m is an equivalence relation on S.

(ii) Let A is a (m,n)-high-ideal of posemigroup S. By (i), A ⊆ ⋃
a∈A

(B∗)n
m(a). Conversely, let

x ∈ ⋃
a∈A

(B∗)n
m(a), hence x ∈ (B∗)n

m(a) for some a ∈ A.

Thus, x ∈ (amSan]∗ ⊆ (AmSAn]∗ ⊆ (A]∗ = A. So,
⋃

a∈A
(B∗)n

m(a)⊆ A.

(iii) This follows directly from (ii).

Lemma 2.3. Let S be a posemigroup with zero 0. For any a,b ∈ S, a(B∗)n
mb if and only if

[a]∗m,n = [b]∗m,n.

Proof. It is clear that if a(B∗)n
mb, then [a]∗m,n = [b]∗m,n. Conversely, let [a]∗m,n = [b]∗m,n. Then,

(a∪a2 ∪ . . .∪am+n ∪amSan]∗ = (b∪b2 ∪ . . .∪bm+n ∪bmSbn]∗.

Let, a 6= b. There are four cases to consider:

(a) a ≤ bs, for some 1< s ≤ m+n and b ≤ at, for some 1< t ≤ m+n. By assumption, we have
a ∈ (bmSbn]∗ and b ∈ (amSan]∗.

(b) a ≤ bs, for some 1< s ≤ m+n and b ∈ (amSan]∗. By relation (∗), we have a ∈ (bmSbn]∗.

(c) b ≤ at, for some 1< t ≤ m+n and a ∈ (bmSbn]∗. This case is similar to (b). So b ∈ (amSan]∗.

(d) a ∈ (bmSbn]∗ and b ∈ (amSan]∗. This cases immediately implies a(B∗)n
mb.

Lemma 2.4. Let A be a non-empty subset of a posemigroup S. Then, the intersection of all
(m,n)-high-ideals contaning A of S, denoted by [A]∗m,n, is a (m,n)-high-ideal contaning A of S
and is of the form

[A]∗m,n = (A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn]∗.
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Proof. Let {A i|i ∈ I} be the set of all (m,n)-high-ideals containing A of S. Then,
⋂
i∈I

A i is

subsemigroup contaning A of S. For j ∈ I , we have(⋂
i∈I

A i

)m
S

(⋂
i∈I

A i

)n ⊆ Am
j SAn

j ⊆ A j.

Then, (⋂
i∈I

A i

)m
S

(⋂
i∈I

A i

)n ⊆ ⋂
i∈I

A i.

But, (⋂
i∈I

A i

]∗ ⊆ ⋂
i∈I

(A i]∗ =
⋂
i∈I

A i ⊆
(⋂

i∈I
A i

]∗
,

hence
⋂
i∈I

A i is a (m,n)-high-ideal of S. Clearly,
(m+n⋃

i=1
A i ∪ AmSAn

]∗
is a subsemigroup of S. We

now consider:((m+n⋃
i=1

A i ∪ AmSAn
]∗)m

S =
((m+n⋃

i=1
A i ∪ AmSAn

]∗)m−1(m+n⋃
i=1

A i ∪ AmSAn
]∗

S

⊆
((m+n⋃

i=1
A i ∪ AmSAn

]∗)m−1
(AS]∗

=
((m+n⋃

i=1
A i ∪ AmSAn

]∗)m−2(m+n⋃
i=1

A i ∪ AmSAn
]∗

(AS]∗

⊆
((m+n⋃

i=1
A i ∪ AmSAn

]∗)m−2
(A2S]∗

⊆ (AmS]∗.

Similarly,

S
((m+n⋃

i=1
A i ∪ AmSAn

]∗)n ⊆ (SAn]∗.

So, ((m+n⋃
i=1

A i ∪ AmSAn
]∗)m

S
((m+n⋃

i=1
A i ∪ AmSAn

]∗)n ⊆ (AmSAn]∗

⊆
(m+n⋃

i=1
A i ∪ AmSAn

]∗
.

Hence,
(m+n⋃

i=1
A i ∪ AmSAn

]∗
is a (m,n)-high-ideal contaning A of S and

[A]∗m,n ⊆ (A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn]∗.

Finally, since (AmSAn]∗ ⊆ (([A]∗m,n)mS([A]∗m,n)n]∗ ⊆ [A]∗m,n, so

(A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn]∗ ⊆ [A]∗m,n.

Therefore,

[A]∗m,n = (A∪ A2 ∪ . . .∪ Am+n ∪ AmSAn]∗.

We are now ready to prove the propositions.
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Proof of Proposition1.1. (i) Let A is 0∗-minimal (m,n)-high-ideal of S and a,b ∈ A \ {0} such
that a 6= b. This fact that {0}⊂ [a]∗m,n ⊆ A and the minimality of A implies, [a]∗m,n = A. Similarly,
[b]∗m,n = A. So, [a]∗m,n = [b]∗m,n. Now, by Lemma 2.3, a(B∗)n

mb. The converse from case (i) follows
by Lemma 2.2 (iii).

(ii) Let {0}⊂ B ⊆ A, for some high-bi-ideal B of S. Then A = B since, A is a (m,n)-high-ideal of
S. We have, A is a 0∗-minimal high-bi-ideal of S, for, assume that there is no a high-bi-ideal B
of S such that {0}⊂ B ⊆ A. Since {0}⊂ (A2]∗ ⊆ A and (A2]∗ is a (m,n)-high-ideal of S, then by
the minimality of A, (A2]∗ = A. On the other hand,

ASA = (A2]∗S(A2]∗ ⊆ (A2SA2]∗ ⊆ A.

Therefore, by assumption, A is a 0∗-minimal high-bi-ideal of S.

Proof of Proposition1.2. (i) Let S contains no non-zero nilpotent (m,n)-high-ideal and R,L are
0∗-minimal right-ideal and 0∗-minimal left-ideal of S respectively, such that (RL]∗ 6= {0}. We
have

(RL]∗(RL]∗ ⊆ (RLRL]∗ ⊆ (RSL]∗ ⊆ (RL]∗,

(RL]∗S(RL]∗ ⊆ (RLSRL]∗ ⊆ (RSL]∗ ⊆ (RL]∗.

Then (RL]∗ is a high-bi-ideal of S, hence, (RL]∗ is a (m,n)-high-ideal of S. Now, let A is a
(m,n)-high-ideal of S and {0} ⊂ A ⊆ (RL]∗. So, Am 6= {0} and An 6= {0}. Since (RL]∗ ⊆ R ∩L,
hence, A ⊆ R∩L. But, {0}⊂ (Am∪AmS]∗ ⊆ R, that by minimality of R implies (Am∪AmS]∗ = R.
Similarly, (An ∪SAn]∗ = L. So,

A ⊆ (RL]∗ = ((Am ∪ AmS]∗(An ∪SAn]∗]∗

= ((Am ∪ AmS)(An ∪SAn)]∗

⊆ (AmSAn]∗ ⊆ A.

Hence, A = (RL]∗.

(ii) Let R,L are 0∗-minimal right-ideal and 0∗-minimal left-ideal of S respectively, such that
(RmLn]∗ ⊆ Z(S) and (RmLn]∗ 6= {0}. Then, (Rm]∗ 6= {0} and (Ln]∗ 6= {0}, since, {0}⊂ (Rm]∗ ⊆ R. By
minimality of R we have (Rm]∗ = R. Similarly, (Ln]∗ = L. So, (RmLn]∗ = ((Rm]∗(Ln]∗]∗ = (RL]∗,
that is a high-bi-ideal of S, hence, (RmLn]∗ is a (m,n)-high-ideal of S. Now, let A is a
(m,n)-high-ideal of S and {0} ⊂ A ⊆ (RmLn]∗. Since, (RL]∗ ⊆ R ∩ L so, A ⊆ R and A ⊆ L.
But, (A ∪ AS]∗ ⊆ (R ∪ RS]∗ ⊆ R that implies (A ∪ AS]∗ = R. Similarly, (A ∪ SA]∗ = L. By
(RmLn]∗ ⊆ Z(S), we have

A ⊆ (RmLn]∗ = (((A∪ AS]∗)m((A∪SA]∗)n]∗

⊆ ((A∪ AS)m(A∪SA)n]∗

⊆ (Am+n ∪ AmSAn]∗

⊆ A.

Hence, A = (RmLn]∗. So, (RmLn]∗ is a 0∗-minimal (m,n)-high-ideal of S.
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Proof of Proposition1.3. (i) Let A and B be 0∗-minimal (m,0)-high-ideal and 0∗-minimal (0,n)-
high-ideal of S respectively, such that, (AB]∗ ⊆ A∩B and (AB]∗ 6= {0}. Since, (AB]∗(AB]∗ ⊆
AB ⊆ (AB]∗ and,

((AB]∗)mS((AB]∗)n ⊆ AmS((AB]∗)n

⊆ ABn

⊆ AB ⊆ (AB]∗,

so, (AB]∗ is a (m,n)-high-ideal of S. Now, let C be a (m,n)-high-ideal of S such that,
{0} ⊂ C ⊆ (AB]∗. Then C ⊆ A and C ⊆ B. But, C ⊆ (CmSCn]∗ follows (CmS]∗ 6= {0} and
(SCn]∗ 6= {0}. Since, (CmS]∗ ⊆ (AmS]∗ ⊆ A so, (CmS]∗ = A. Similarly (SCn]∗ = B. Now,

C ⊆ (AB]∗

⊆ ((CmS]∗(SCn]∗]∗

= (CmSCn]∗ ⊆ C.

Thus, (AB]∗ = C. Hence, (AB]∗ is 0∗-minimal.

(ii) Let A and B be 0∗-minimal (m,0)-high-ideal and 0∗-minimal (0,n)-high-ideal of S
respectively and A∩B 6= {0}. We have,

(A∩B)mS(A∩B)n ⊆ (AmS)Bn ⊆ ABn ⊆ B,

(A∩B)mS(A∩B)n ⊆ Am(SBn)⊆ AmB ⊆ A.

Hence, (A∩B)mS(A∩B)n ⊆ A∩B. So, A∩B is a (m,n)-high-ideal of S. Now, let C be a (m,n)-
high-ideal of S such that, {0} ⊂ C ⊆ A∩B. Then, C ⊆ A and C ⊆ B. But, C ⊆ CmSCn follows
CmS 6= {0} and SCn 6= {0}. Since, CmS ⊆ AmS ⊆ A so, CmS = A. Similarly SCn = B. Now,

C ⊆ A∩B

= CmS∩SCn

= CmSCn ⊆ C.

Thus, A∩B = C. Hence, A∩B is 0∗-minimal.

Proof of Proposition1.4. Let S is (m,n)-regular. If a ∈ S and x ∈ [a]∗m,n then, by relation (∗∗),
x ≤ yt for some y in (a∪a2 ∪ . . .∪am+n ∪amSan) and t ∈N. If y ∈ amSan then, yt ∈ (amSan)t =
(amSan)(amSan) . . . (amSan) = amSan+mS . . .San+mSan ⊆ amSan so, y ∈ (amSan]∗ and hence,

x ∈ (amSan]∗. If y ∈
m+n⋃
i=1

ai then, y= ak for some k ∈ {1,2, . . . ,m+n}. So,

x ∈ (ak]∗ ⊆ (((amSan]∗)k]∗

⊆ ((amSan]∗]∗

= (amSan]∗.

Therefore, [a]∗m,n ⊆ (amSan]∗. On the other hand, (amSan]∗ ⊆ [a]∗m,n. So, [a]∗m,n = (amSan]∗.
Conversely, if a ∈ S then, a ∈ [a]∗m,n = (amSan]∗. Hence, S is (m,n)-regular.
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3. Examples

In this section we give two posemigroups where, one is (1,1)-regular and the other justifying
the conditions of the Proposition 1.4.

Example 3.1. Let S = {a,b, c,d, } be a posemigroup with the multiplication and the order
relation defined by:

· a b c d
a a a a a
b a b a b
c c c c c
d c d c d

≤:= {(a,a), (a,b), (a, c), (a,d), (b,b), (c, c), (c,d)(d,d)}.

We give the covering relation and the figure of S by

¹:= {(a,b), (a, c), (c,d)}

a

b

c

d

So, S is (m,n)-regular for any integer m,n ≥ 1.

Example 3.2. Let S = {a,b, c,d, e} be a posemigroup with the multiplication and the order
relation defined by:

· a b c d e
a a a a a a
b a b a d a
c a e c c e
d a b d d b
e a e a c a

≤:= {(a,a), (a,b), (a, c), (a,d), (a, e), (b,b), (c, c), (d,d), (e, e)}.

We give the covering relation and the figure of S by

¹:= {(a,b), (a, c), (a,d), (a, e)}

a

b c d e
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Then, we have:

[a]∗1,1 = (a]∗, [b]∗1,1 = ({a,b}]∗, [c]∗1,1 = ({a, c}]∗, [d]∗1,1 = ({a,d}]∗, [e]∗1,1 = ({a, e}]∗.

Therefore, by Proposition 1.4, S is (1,1)-regular(or regular).

4. Conclusion
The notion of an ideal is a main concept in some algebraic structures. For instance, ideals play
a considerable role in ring theory, semiring theory, semigroup theory and their corresponding
ordered structures. In this paper, we generalized the notion of (m,n)-ideals to (m,n)-high-ideals
and investigated some properties of posemigroups using this new notion. Also, we extended
the concept of 0-minimal to 0∗-minimal and get a connection between 0∗-minimal (m,n)-high-
ideals and (m,n)-regular posemigroups. Another idea in this way is to study these notions for
posemirings and get new characterization results concerning such structures.
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